Xueyang Xu

To download the discussion slides, go to

Error occurred during initialization of VM
Could not reserve enough space for object heap
Could not create the Java virtual machine.

Solution: Limit the size of maximum memory
for VM
(Max memory of 512M)
Step 1: setenv ANT OPTS "-Xmx512m" On
command line »
Step 2: add memoryMaximumSize="512m" to
javac block in build-java section of your
build.xml file

Step 3: run java with —-xmx512m parameter

States

State: Internal representation of an agent about the
world; what the agent cares about

Not necessarily be correct
Initial state
Actions

Given a state, what the available actions are
Transition model

Result(s,a) that returns state resulting from doing
action ain state s

Goal states
Path cost

1/19/2010

Deterministic, Stochastic and Strategic
Environment
Deterministic - Completely predictable
Source of Non-determinism
Stochasticity
Strategic actions of other agents
A strategic environment is not necessarily
otherwise deterministic

Example: poker is both stochastic and
strategic

Formulate the problem

Find a sequence of actions (offline) that
achieves the goal
Offline vs. Online search

Execute the sequence of action

Usually for static, deterministic environment

Vacuum world

Stafes: Agent location + dirf location? 8
states

Initial State: Any

Actions: Left, Right and Suck

Transition model: Expected effects. Except
for no effects on Left in leftmost square,
Right in rightmost square and Suck in a clean
square

Goal state: All squares are clean

Path cost: 1 (2)

http://april.eecs.umich.edu/courses/eecs492_w10/wiki/index.php/Discussion_Slides

7-queen
States:
Initial State:
Actions:
Transition model:
Goal State
Path cost:

State: agent’s representation of the world
configuration

State space: all reachable states from initial state
Search space: a data structure that abstracts the
state space

Nodes: a data structure that represent states and
related information (state, parent node, path cost...)
Edges represent actions and path costs(reflects
fransition model)

Solution is the path from initial to goal state

Opffimal solution is the solution of the shortest path
cos

function Tree-search(problem)
returns a solution, or failure

loop do
if fringe.isEmpty() then return failure
=t ()
if problem.isGoalState (node)
then return node;

Only the order of the queue makes the
difference

Avoid repeated states (Graph search)

1/19/2010

7-queen
States: All possible arrangements of n queens, one
per column in the leftmost n columns, with no queen
attacking another
Initial State: No queens on the board
Actions: Add a queen to any square in the leftmost
empty column such that it is not attacked by any
other queen
Transition model: For any addition, return the board
with a queen added to the specified square
Goal State: 8 queens on the board, none attacked
Path cost:1

Uninformed search
Only uses information in problem formulation
Informed search

Has heuwristics that guides an agent on
where to look for solutions

Search Strategy
Order of node expansion

Expansion: Given a node, creates all children
of the node according to fransition model

function Tree-search (problem)
returns a solution, or failure
closed = new Set();
closed.add (problem. initialState) ;

if fringe.isEmpty() then return failure
t()
if problem.isGoalState (node)
then return node,
for each child in problem.expand (node)
if !closed.contain (child)
fringe.put (child)

Avoid repeated states

Breadth-First:

FIFO queue, returning the oldest item
Uniform-Cost:

Priority queue, returning the least-cost item
Depth-First:

LIFO, returning the newest item
Depth-Limited DFS:

Run DFS, cut off search at depth L
lterative Deepening DFS:

Run Depth-Limited DFS with L from 1 to infinity

S = start, G = goal

Queue = {S} Queue = {A, D}
Select S Select A

Goal(S) = true? Goal(A) = true?

If not, Expand(S) If not, Expand(A)

Queue = {D, B, D} Queue = {B, D, A, E}
Select D Select B

etc.

Goal(D) = true?

If not, expand(D)

1/19/2010

Level 3
Queue = {C, E, S, E, S, B, B, F}

Level 4

Expand queue until G is at front
Select G

Goal(G) = true

—@
O ©)
\

®

Queue = {A,D} Queue = {B,D,D}

Queue = {C,E,D,D} Queue = {D,F,D,D}

1/19/2010

Queue = {G,D,D}

()

| Figure3d3 A route-finding problem. (a) The statc space, showing the cost for cach operutor
(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node
with g = 10 will be selected.

Completeness: Guaranteed to find a
solution if it exists

Optimality: The minimum path cost
solution is found

Time Complexity: How long it takes to
find a solution

Space Complexity: How much memory is
needed

Informed (heuristic) search

Use heuristic function as a guidance on
which node to expand

Heuristic function for A*
f(n) =g(n) +h(n)
where g(n) is the path cost (cost so far to

reach n) and h(n) is the heuristic
(estimated cost from n go goal)

f(n) is an estimated total cost

Straight-Tline distance

1o Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Tasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366

160

1/19/2010

Criterion Breadth- Uniform- Depth- Depth- Tterative
First Cost First Limited ~ Deepening

Complete? Yes Yes Ni No

Optimal? Yes Yes N No

Time o+ opeEY oY)
complexity

spacg O™ O
compexity —/-,//7 S

Linear in depth!

ExpoTl’enual in depth!

Notes:
1. BFS and iterative deepening only optimal when action cost is uniform;
2. UCS only optimal when action cost is nonnegative;

To expand the nodes with smallest f(n)

Admissible: Heuristic functions should
never overestimate the path cost

