
1/19/2010

1

To download the discussion slides, go to
http://april.eecs.umich.edu/courses/eecs492_w10/wiki/index.php/Discussion_Slides

 Deterministic, Stochastic and Strategic
Environment
› Deterministic – Completely predictable

› Source of Non-determinism

 Stochasticity

 Strategic actions of other agents

 A strategic environment is not necessarily
otherwise deterministic

 Example: poker is both stochastic and
strategic

Error occurred during initialization of VM
Could not reserve enough space for object heap

Could not create the Java virtual machine.

 Solution: Limit the size of maximum memory
for VM
(Max memory of 512M)
› Step 1: setenv ANT_OPTS "-Xmx512m" on

command line
› Step 2: add memoryMaximumSize="512m" to

javac block in build-java section of your
build.xml file

› Step 3: run java with –Xmx512m parameter

1. Formulate the problem

2. Find a sequence of actions (offline) that

achieves the goal

› Offline vs. Online search

3. Execute the sequence of action

 Usually for static, deterministic environment

 States
› State: Internal representation of an agent about the

world; what the agent cares about

› Not necessarily be correct

 Initial state
 Actions

› Given a state, what the available actions are

 Transition model
› Result(s,a) that returns state resulting from doing

action a in state s

 Goal states

 Path cost

 Vacuum world
› States: Agent location + dirt location? 8

states

› Initial State: Any

› Actions: Left, Right and Suck

› Transition model: Expected effects. Except
for no effects on Left in leftmost square,
Right in rightmost square and Suck in a clean
square

› Goal state: All squares are clean

› Path cost: 1 (?)

http://april.eecs.umich.edu/courses/eecs492_w10/wiki/index.php/Discussion_Slides

1/19/2010

2

 7-queen

› States:

› Initial State:

› Actions:

› Transition model:

› Goal State

› Path cost:

 7-queen
› States: All possible arrangements of n queens, one

per column in the leftmost n columns, with no queen
attacking another

› Initial State: No queens on the board

› Actions: Add a queen to any square in the leftmost
empty column such that it is not attacked by any
other queen

› Transition model: For any addition, return the board
with a queen added to the specified square

› Goal State: 8 queens on the board, none attacked

› Path cost:1

 State: agent’s representation of the world
configuration

 State space: all reachable states from initial state
 Search space: a data structure that abstracts the

state space

 Nodes: a data structure that represent states and
related information (state, parent node, path cost…)

 Edges represent actions and path costs(reflects
transition model)

 Solution is the path from initial to goal state
 Optimal solution is the solution of the shortest path

cost

 Uninformed search
› Only uses information in problem formulation

 Informed search
› Has heuristics that guides an agent on

where to look for solutions

 Search Strategy
› Order of node expansion

 Expansion: Given a node, creates all children
of the node according to transition model

function Tree-search(problem)

returns a solution, or failure

fringe = new Queue();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node = fringe.get()

if problem.isGoalState(node)

then return node;

fringe.putAll(problem.expand(node))

 Only the order of the queue makes the
difference

 Avoid repeated states (Graph search)

function Tree-search(problem)

returns a solution, or failure

closed = new Set();

closed.add(problem.initialState);

fringe = new Queue();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node = fringe.get()

if problem.isGoalState(node)

then return node;

for each child in problem.expand(node)

if !closed.contain(child)

fringe.put(child)

 Avoid repeated states

1/19/2010

3

 Breadth-First:
› FIFO queue, returning the oldest item

 Uniform-Cost:
› Priority queue, returning the least-cost item

 Depth-First:
› LIFO, returning the newest item

 Depth-Limited DFS:
› Run DFS, cut off search at depth L

 Iterative Deepening DFS:
› Run Depth-Limited DFS with L from 1 to infinity

S G

A B

D E

C

F

S = start, G = goal

S
S G

A B

D E

C

F

Queue = {S}

Select S

Goal(S) = true?

If not, Expand(S)

S
S G

A B

D E

C

F
A D

Queue = {A, D}

Select A

Goal(A) = true?

If not, Expand(A)

S
S G

A B

D E

C

F
A D

B D Queue = {D, B, D}

Select D

Goal(D) = true?

If not, expand(D)

S
S G

A B

D E

C

F
A D

A EB D Queue = {B, D, A, E}

Select B
etc.

1/19/2010

4

S
S G

A B

D E

C

F
A D

A EB D

B FE S E S BC

Level 3
Queue = {C, E, S, E, S, B, B, F}

S
S G

A B

D E

C

F
A D

A EB D

B FE S E S B

GD F B FA D C E A C

C

Level 4
Expand queue until G is at front
Select G
Goal(G) = true

S
S G

A B

D E

C

F
A D

Queue = {A,D}

S
S G

A B

D E

C

F
A D

B D
Queue = {B,D,D}

S
S G

A B

D E

C

F
A D

B D

EC

Queue = {C,E,D,D}

S
S G

A B

D E

C

F
A D

B D

E

D F

C

Queue = {D,F,D,D}

1/19/2010

5

S
S G

A B

D E

C

F
A D

B D

E

D F

C

G

Queue = {G,D,D}

1/19/2010

6

 Completeness: Guaranteed to find a

solution if it exists

 Optimality: The minimum path cost

solution is found

 Time Complexity: How long it takes to

find a solution

 Space Complexity: How much memory is

needed

Notes:

1. BFS and iterative deepening only optimal when action cost is uniform;

2. UCS only optimal when action cost is nonnegative;

 Informed (heuristic) search

› Use heuristic function as a guidance on

which node to expand

 Heuristic function for A*

f(n) = g(n) + h(n)

where g(n) is the path cost (cost so far to

reach n) and h(n) is the heuristic

(estimated cost from n go goal)

f(n) is an estimated total cost

 To expand the nodes with smallest f(n)

 Admissible: Heuristic functions should

never overestimate the path cost

