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Stereo
• Classic approach to stereo vision: matching pixel 

patches between left and right. 

• Shortcoming: in low-detail areas, results are erratic. 
(How would we enforce local consistency?)

 

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching. 

 
Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to 
noise and other differences (such as specular reflections and occlusions) that can occur between the left and 
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4 
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data 
(fewer discontinuities), but many of the details are missing. 
 

  

Figure 4. Comparison of  depth maps created with different block sizes. 

 
Conclusion 
 
Perceiving depth from multiple source images is a computationally expensive process. The block-matching 
algorithm used here has generally good performance, and the confidence estimate can be used to effectively 
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail. 
While only simple block-matching approaches were outlined here, depth perception remains a much 
researched topic. 
 
 
MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344 
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Block Matching
• Exploit epipolar geometry

‣ A pixel in the left camera corresponds 
to a ray.

‣ The image of a ray (in the right camera) 
is a line

‣ Thus, if we know the geometry of the 
cameras, we only need to search for 
matches along a line.

• Matching procedure

‣ Block size (5x5, 7x7, ...)

‣ Comparison (SAD, SSE)

• Sub-pixel matching

‣ Fractional translation of reference image

‣ Polynomial interpolation of full-pixel data



Stereo Vision: Graphical Model

• Label each pixel with a 
disparity

‣ Maximize agreement 
between adjacent 
pixels (“discontinuity 
cost”)

‣ Maximize agreement 
between left and right 
pixel (“data cost”)



Stereo MRFs
• Could approach as a least-squares problem

‣ State: disparity at each node (relax to continuous 
values)

‣ Optimize product of function potentials (or equiv. 
sum of log of potentials... “log likelihood”)

• Very difficult local minimum

‣ Least-squares solves a local quadratic problem. If 
you’re not in the right basin, you won’t converge.

‣ Least squares doesn’t work well.



Iterated Conditional Modes
• Simple idea:

‣ Consider a single node at a time. (i.e., fix the 
values of all other nodes)

‣ Compute a new disparity for that node that 
minimizes the log likelihood

- Only a function of the neighboring factor 
potentials... cheap!

- Always reduces global error

• Not much better than least squares--- still get stuck 
in local minima.

• Need a method that can “look ahead”, leaping out of 
local minima

‣ Consider two nodes a=0, b=0. Cost f(a,b) has 
local minimum at 0,0, but global minimum at 1,1. 



Loopy Belief Propagation
• Each node passes messages to its neighbors:

‣ “If you take on value v, the cost could be as low as m(v).”

‣ All possible values of v are evaluated in a best-case sense, 
allowing the recipient to “teleport” to a new minimum
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Isn’t this fun?
• With an almost trivial model, we can destroy block 

matching problems.

‣ You can be competitive with Middlebury top 100 in a 
couple days’ effort!

SSD+min-filter [scharstein szeliski], rank = 90 LBP [olson], rank* = 60



The disappointment
• MRF approaches are 

too slow for robots

‣ #1. [Wang/Zheng]: 
20s

‣ #2. [Yang/Nister]: 
62s

• Block matching is fast!

‣ (unranked) 
[Konolige], 10ms



Why is LBP slow?
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Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1



Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1
fp=2



Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3



Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3



• This is a min-convolution operation

‣ Naive implementation is O(k2)

• Efficient algorithms exist for special cases!

‣ In linear case, forward-backwards algorithm O(k) 

‣ Quadratic case also has a method... a bit messier, but still O(k)

• Exact!

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution



Performance
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Cool Trick #2: Multi-Grid

• Advantages:

‣ Information spreads rapidly around graph

• Disadvantages:

‣ Have to come up with function potentials for other levels of the 
image pyramid

‣ Can lead to artifacts due to the arbitrary alignment of the grid cells

[Felzenszwalb/Huttenlocher 2004]

Figure 4: Illustration of two levels in the multi-grid method. Each node in level ! corresponds to a

2 × 2 block of nodes in level ! − 1.

where D! and V ! are the data and discontinuity costs at level !. There are a number of options for

how to define the costs at each level. We take an approach motivated by finite-element methods,

where the full set of image pixels corresponding to each block is taken into consideration.

First consider the data cost D!
i,j . Intuitively assigning a label α to a block (i, j) at level ! is

equivalent to assigning that label to each pixel in the block, yielding a sum of the data costs for the

pixels in that block,

D!
ij(α) =

ε−1
∑

u=0

ε−1
∑

v=0

Dεi+u,εj+v(α).

The summation of negative log costs corresponds to taking a product of probabilities, thus the data

cost for an ε×ε block can be understood in terms of the probability of observing the corresponding

set of pixels given one particular label for all of them. A given block can prefer several labels,

because a cost is determined for each label of the block. For instance, if half the pixels prefer label

α and half prefer label β, then each of these labels will have low cost whereas other labels will

have high cost. Note that when computing the data costs it is not necessary to always sum over the

original grid Γ. Instead the calculation can be done more efficiently by summing over four data

costs at the next finer level.

Now consider the discontinuity costs at level !. There is no discontinuity cost between pixels

inside a block, as every coarse labeling assigns the same label for such pixels. For each pair of

neighboring blocks there are ε pairs of pixels along their boundary. In measuring the difference

between labels for two neighboring blocks we use a finite difference approach, where the difference

15



Multi-resolution LBP



Cool Trick #3: Quantized labels

• Idea: Start iterating with 
fewer labels, slowly 
increase number of labels

• Advantages:

‣ Information spreads 
rapidly around graph

‣ No spatial blocking 
artifacts

• Disadvantage:

‣ Not as fast as multi-grid

[Strom, Olson 2010*]



Quantized LBP



PrimeSense/Kinect
• Similar to a stereo camera in concept

‣ But replace one camera with a projector

‣ Second camera detects projected camera.

• Why is this a good idea?

‣ It works even when the environment is devoid of distinguishing features 
(e.g. white walls)

‣ Under favorable conditions, very good results

• What are the shortcomings?

‣ Brightness of projector limits effectiveness at long ranges and outdoors

‣ Power consumption / stealth



IR Laser

Diffraction
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Different for every 
sensor!

In focus at all ranges 
due to coherent light 

source.
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Matching

Reference 
image

Registration RGBD Image

reliable data on how Kinect works hard to find. Sources:
-- libfreenect
-- www.ros.org/wiki/kinect_calibratin/technical  (good!)
-- iFixit teardown and PrimeSense Bill of Materials
-- PrimeSense patent filings (ugh)



Kinect Particulars
• Produces 640x480 RGBD Image

‣ IR Camera is 1280x1024 @ 15Hz

- Uses 2x2 binning to increase sensitivity and frame rate to 30Hz

- Monochrome... 16 bit?

• Matching

‣ Calibration image stored in device at factory

‣ Repeatedly “streamed” in sync with acquired IR image, fed into matching engine

‣ Block based matching

- 9x9 blocks

- 1/8 pixel interpolation

- 64 (?) pixel search range   (Kinect returns 11 bit range values)

• Registration

‣ Corrects for parallax of RGB and depth sensor. (Could be eliminated by using a 
single sensor with both RGB and IR pixels in an RGBI “Bayer” pattern).


