EECS568 Mobile Robotics: Methods and Principles
Prof. Edwin Olson

L22.A trip through the sensor zoo




Stereo

® Classic approach to stereo vision: matching pixel
patches between left and right.

100 o |

150 fu

o N ..‘- I_ i ", - -; .
a0 100 150 200 250 50 100 150 200 250

Left Image Depth Map (8x8)

® Shortcoming: in low-detail areas, results are erratic.
(How would we enforce local consistency?)




Block Matching

®  Exploit epipolar geometry

» A pixel in the left camera corresponds

to a ray.
»  The image of a ray (in the right camera)
s 2 line DG - LG+ iy + )
»  Thus, if we know the geometry of the (L.j)ew
cameras, we only need to search for ,
matches along a line. Z (LG - Lx+iy+))

(i, EW

®  Matching procedure

»  Block size (5x5, 7x7, ...)

SSD :
»  Comparison (SAD, SSE) iggﬁ;ﬁ' Fit parabola
Minimum through
>3 points

®  Sub-pixel matching approximately

»  Fractional translation of reference image

»  Polynomial interpolation of full-pixel data Horizontal shit

Bernd Girod: EE398A Image and Video Compression




Stereo Vision: Graphical Model

® |abel each pixel with a
disparity

» Maximize agreement
between adjacent
pixels (“discontinuity
cost”)

» Maximize agreement
between left and right
pixel (“data cost”)




Stereo MRFs

® Could approach as a least-squares problem

» State: disparity at each node (relax to continuous
values)

» Optimize product of function potentials (or equiv.
sum of log of potentials...“log likelihood™)

® Very difficult local minimum

» Least-squares solves a local quadratic problem. If
you're not in the right basin, you won’t converge.

» Least squares doesn’t work well.




lterated Conditional Modes

® Simple idea:

» Consider a single node at a time. (i.e., fix the
values of all other nodes)

» Compute a new disparity for that node that
minimizes the log likelihood

=  Only a function of the neighboring factor
potentials... cheap!

=  Always reduces global error

® Not much better than least squares--- still get stuck
in local minima.

® Need a method that can “look ahead”, leaping out of
local minima

» Consider two nodes a=0, b=0. Cost f(a,b) has
local minimum at 0,0, but global minimum at [, 1.




Loopy Belief Propagation

® FEach node passes messages to its neighbors:
» “If you take on value v, the cost could be as low as m(v).”

» All possible values of v are evaluated in a best-case sense,
allowing the recipient to “teleport” to a new minimum
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we’ll report the cost pixel p
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Isn’t this fun?

® With an almost trivial model, we can destroy block
matching problems.

» You can be competitive with Middlebury top 100 in a
couple days’ effort!

|
SSD+min-filter [scharstein szeliski], rank = 90 LBP [olson], rank* = 60




The disappointment

® MRF approaches are
too slow for robots

» #1.[Wang/Zheng]:
20s

» #2.[Yang/Nister]:
62s

® Block matching is fast!

» (unranked)
[Konolige], 10ms




Why is LBP slow?

* Short answer: because computing messages is slow
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P’s message to q
specifies a “cost” for
each value that g
might take.

Cost of neighbors How much do our

having different labels neighbors say it would
cost for g to have value p

For every value fq, Cost of assigning fp to for x=1:width

we’ll report the cost pixel p .
for the best-case fp. for y=1:height
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for fq=1:1abels
for fp=1:labels




Cool trick #1: Min Convolution

[Felzenswalb/Huttenlocher 2004]
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Cool trick #1: Min Convolution

[Felzenswalb/Huttenlocher 2004]

m§9—>q(fq) = n}ln (V(fpqu> + D(fp) + Z mg—gp(fp))
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Cool trick ;

£l : Min Convolution

® This is a min-convolution operation

» Naive implementation is O(k?)

® Efficient algorithms exist for special cases!

» In linear case, forward-backwards algorithm O(k)

» Quadratic case also has a method... a bit messier, but still O(k)

® Exact!
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Cool Trick #2: Multi-Grid

[Felzenszwalb/Huttenlocher 2004]

® Advantages:
» Information spreads rapidly around graph
® Disadvantages:

» Have to come up with function potentials for other levels of the
image pyramid

» Can lead to artifacts due to the arbitrary alignment of the grid cells




Multi-resolution LBP




Cool Trick #3: Quantized labels

[Strom, Olson 2010%*]

® |dea: Start iterating with
fewer labels, slowly
increase number of labels

® Advantages:

» Information spreads
rapidly around graph

» No spatial blocking
artifacts

® Disadvantage:

» Not as fast as multi-grid




Quantized LBP




PrimeSense/Kinect

® Similar to a stereo camera in concept

4
4

But replace one camera with a projector

?

Second camera detects projected camera. Ko,

®  Why is this a good idea?

>

>

It works even when the environment is devoid of distinguishing features
(e.g. white walls)

Under favorable conditions, very good results

®  What are the shortcomings?

>
>

Brightness of projector limits effectiveness at long ranges and outdoors

Power consumption / stealth
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reliable data on how Kineet works hard to find. Sources: *
-- libfreeneet
-- www.ros.org/wiki/kinect_calibratin/technical (good!) ) )
-- iFixit teardown and PrimeSense Bill of Materials Registration RGBD Image
-- PrimeSense patent filings (ugh)




Kinect Particulars

® Produces 640x480 RGBD Image
» IR Camerais 1280x1024 @ |5Hz
= Uses 2x2 binning to increase sensitivity and frame rate to 30Hz
= Monochrome... |6 bit?
® Matching
»  Calibration image stored in device at factory
» Repeatedly “streamed” in sync with acquired IR image, fed into matching engine
»  Block based matching
= 9x9 blocks
= |1/8 pixel interpolation
= 64 () pixel search range (Kinect returns || bit range values)
® Registration

»  Corrects for parallax of RGB and depth sensor. (Could be eliminated by using a
single sensor with both RGB and IR pixels in an RGBI “Bayer” pattern).




