
L22. A trip through the sensor zoo

EECS568 Mobile Robotics: Methods and Principles
Prof. Edwin Olson

Stereo
• Classic approach to stereo vision: matching pixel

patches between left and right.

• Shortcoming: in low-detail areas, results are erratic.
(How would we enforce local consistency?)

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching.

Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to
noise and other differences (such as specular reflections and occlusions) that can occur between the left and
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data
(fewer discontinuities), but many of the details are missing.

Figure 4. Comparison of depth maps created with different block sizes.

Conclusion

Perceiving depth from multiple source images is a computationally expensive process. The block-matching
algorithm used here has generally good performance, and the confidence estimate can be used to effectively
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail.
While only simple block-matching approaches were outlined here, depth perception remains a much
researched topic.

MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344

50 100 150 200 250

50

100

150

200

250

Left Image Depth Map Confidence (expected error)

Left Image Depth Map (16x16) Depth Map (8x8)

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching.

Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to
noise and other differences (such as specular reflections and occlusions) that can occur between the left and
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data
(fewer discontinuities), but many of the details are missing.

Figure 4. Comparison of depth maps created with different block sizes.

Conclusion

Perceiving depth from multiple source images is a computationally expensive process. The block-matching
algorithm used here has generally good performance, and the confidence estimate can be used to effectively
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail.
While only simple block-matching approaches were outlined here, depth perception remains a much
researched topic.

MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344

50 100 150 200 250

50

100

150

200

250

Left Image Depth Map Confidence (expected error)

Left Image Depth Map (16x16) Depth Map (8x8)

Block Matching
• Exploit epipolar geometry

‣ A pixel in the left camera corresponds
to a ray.

‣ The image of a ray (in the right camera)
is a line

‣ Thus, if we know the geometry of the
cameras, we only need to search for
matches along a line.

• Matching procedure

‣ Block size (5x5, 7x7, ...)

‣ Comparison (SAD, SSE)

• Sub-pixel matching

‣ Fractional translation of reference image

‣ Polynomial interpolation of full-pixel data

Stereo Vision: Graphical Model

• Label each pixel with a
disparity

‣ Maximize agreement
between adjacent
pixels (“discontinuity
cost”)

‣ Maximize agreement
between left and right
pixel (“data cost”)

Stereo MRFs
• Could approach as a least-squares problem

‣ State: disparity at each node (relax to continuous
values)

‣ Optimize product of function potentials (or equiv.
sum of log of potentials... “log likelihood”)

• Very difficult local minimum

‣ Least-squares solves a local quadratic problem. If
you’re not in the right basin, you won’t converge.

‣ Least squares doesn’t work well.

Iterated Conditional Modes
• Simple idea:

‣ Consider a single node at a time. (i.e., fix the
values of all other nodes)

‣ Compute a new disparity for that node that
minimizes the log likelihood

- Only a function of the neighboring factor
potentials... cheap!

- Always reduces global error

• Not much better than least squares--- still get stuck
in local minima.

• Need a method that can “look ahead”, leaping out of
local minima

‣ Consider two nodes a=0, b=0. Cost f(a,b) has
local minimum at 0,0, but global minimum at 1,1.

Loopy Belief Propagation
• Each node passes messages to its neighbors:

‣ “If you take on value v, the cost could be as low as m(v).”

‣ All possible values of v are evaluated in a best-case sense,
allowing the recipient to “teleport” to a new minimum

Cost	
 of	
 neighbors	

having	
 different	
 labels

P’s	
 message	
 to	
 q	

specifies	
 a	
 “cost”	
 for	

each	
 value	
 that	
 q	

might	
 take.

How	
 much	
 do	
 our	

neighbors	
 say	
 it	
 would	

cost	
 for	
 q	
 to	
 have	
 value	
 p

For	
 every	
 value	
 fq,	

we’ll	
 report	
 the	
 cost	

for	
 the	
 best-­‐case	
 fp.

pq

Cost	
 of	
 assigning	
 fp	
 to	

pixel	
 p

a

b

c

Isn’t this fun?
• With an almost trivial model, we can destroy block

matching problems.

‣ You can be competitive with Middlebury top 100 in a
couple days’ effort!

SSD+min-filter [scharstein szeliski], rank = 90 LBP [olson], rank* = 60

The disappointment
• MRF approaches are

too slow for robots

‣ #1. [Wang/Zheng]:
20s

‣ #2. [Yang/Nister]:
62s

• Block matching is fast!

‣ (unranked)
[Konolige], 10ms

Why is LBP slow?

Cost	
 of	
 neighbors	

having	
 different	
 labels

P’s	
 message	
 to	
 q	

specifies	
 a	
 “cost”	
 for	

each	
 value	
 that	
 q	

might	
 take.

How	
 much	
 do	
 our	

neighbors	
 say	
 it	
 would	

cost	
 for	
 q	
 to	
 have	
 value	
 p

For	
 every	
 value	
 fq,	

we’ll	
 report	
 the	
 cost	

for	
 the	
 best-­‐case	
 fp.

pq

for x=1:width
for y=1:height

for n=1:neighbors
for fq=1:labels

for fp=1:labels
...

Cost	
 of	
 assigning	
 fp	
 to	

pixel	
 p

• Short answer: because computing messages is slow

a

b

c

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1
fp=2

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3

• This is a min-convolution operation

‣ Naive implementation is O(k2)

• Efficient algorithms exist for special cases!

‣ In linear case, forward-backwards algorithm O(k)

‣ Quadratic case also has a method... a bit messier, but still O(k)

• Exact!

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution

Performance

0 200 400 600 800 1000
2

2.5

3

3.5

4

4.5

5

5.5
x 104

time (s)

en
er

gy

without minconv
with minconv

tsukuba (384 x 288), 16x subpixel, nlabels=256

Cool Trick #2: Multi-Grid

• Advantages:

‣ Information spreads rapidly around graph

• Disadvantages:

‣ Have to come up with function potentials for other levels of the
image pyramid

‣ Can lead to artifacts due to the arbitrary alignment of the grid cells

[Felzenszwalb/Huttenlocher 2004]

Figure 4: Illustration of two levels in the multi-grid method. Each node in level ! corresponds to a

2 × 2 block of nodes in level ! − 1.

where D! and V ! are the data and discontinuity costs at level !. There are a number of options for

how to define the costs at each level. We take an approach motivated by finite-element methods,

where the full set of image pixels corresponding to each block is taken into consideration.

First consider the data cost D!
i,j . Intuitively assigning a label α to a block (i, j) at level ! is

equivalent to assigning that label to each pixel in the block, yielding a sum of the data costs for the

pixels in that block,

D!
ij(α) =

ε−1
∑

u=0

ε−1
∑

v=0

Dεi+u,εj+v(α).

The summation of negative log costs corresponds to taking a product of probabilities, thus the data

cost for an ε×ε block can be understood in terms of the probability of observing the corresponding

set of pixels given one particular label for all of them. A given block can prefer several labels,

because a cost is determined for each label of the block. For instance, if half the pixels prefer label

α and half prefer label β, then each of these labels will have low cost whereas other labels will

have high cost. Note that when computing the data costs it is not necessary to always sum over the

original grid Γ. Instead the calculation can be done more efficiently by summing over four data

costs at the next finer level.

Now consider the discontinuity costs at level !. There is no discontinuity cost between pixels

inside a block, as every coarse labeling assigns the same label for such pixels. For each pair of

neighboring blocks there are ε pairs of pixels along their boundary. In measuring the difference

between labels for two neighboring blocks we use a finite difference approach, where the difference

15

Multi-resolution LBP

Cool Trick #3: Quantized labels

• Idea: Start iterating with
fewer labels, slowly
increase number of labels

• Advantages:

‣ Information spreads
rapidly around graph

‣ No spatial blocking
artifacts

• Disadvantage:

‣ Not as fast as multi-grid

[Strom, Olson 2010*]

Quantized LBP

PrimeSense/Kinect
• Similar to a stereo camera in concept

‣ But replace one camera with a projector

‣ Second camera detects projected camera.

• Why is this a good idea?

‣ It works even when the environment is devoid of distinguishing features
(e.g. white walls)

‣ Under favorable conditions, very good results

• What are the shortcomings?

‣ Brightness of projector limits effectiveness at long ranges and outdoors

‣ Power consumption / stealth

IR Laser

Diffraction
grating

Speckle pattern
projected onto world.

Different for every
sensor!

In focus at all ranges
due to coherent light

source.

RGB
Camera

Depth
Camera

IR bandpass
filter

Disparity
Matching

Reference
image

Registration RGBD Image

reliable data on how Kinect works hard to find. Sources:
-- libfreenect
-- www.ros.org/wiki/kinect_calibratin/technical (good!)
-- iFixit teardown and PrimeSense Bill of Materials
-- PrimeSense patent filings (ugh)

Kinect Particulars
• Produces 640x480 RGBD Image

‣ IR Camera is 1280x1024 @ 15Hz

- Uses 2x2 binning to increase sensitivity and frame rate to 30Hz

- Monochrome... 16 bit?

• Matching

‣ Calibration image stored in device at factory

‣ Repeatedly “streamed” in sync with acquired IR image, fed into matching engine

‣ Block based matching

- 9x9 blocks

- 1/8 pixel interpolation

- 64 (?) pixel search range (Kinect returns 11 bit range values)

• Registration

‣ Corrects for parallax of RGB and depth sensor. (Could be eliminated by using a
single sensor with both RGB and IR pixels in an RGBI “Bayer” pattern).

