
DART: A Particle-based Method for Generating Easy-to-Follow
Directions

Robert Goeddel Edwin Olson

Abstract— Despite evidence that human wayfinders consider
directions involving landmarks or topological descriptions eas-
ier to follow, the majority of commerical direction-planning
services and GPS navigation units plan routes based on met-
rically or temporally shortest paths, ignoring this potentially
valuable information. We propose a methodo for generating
directions that maximizes the probability of a human arriving
at the correct destination, taking into account a model of
their ability to follow topological, metrical, and landmark-based
directions. We discuss optimization techniques for employing
these models and present a method, DART, for extracting
model-improved sets of directions in a tractable amount of time.
DART employs particle simulation techniques to maximize the
probability that the modeled wayfinder will successfully reach
their destination. Our synthetic evaluation shows that DART
produces improvements in arrival rates over existing methods
and illustrates how DART’s directions reflect properties of the
wayfinder model.

I. INTRODUCTION

Effectively directing a human to a particular destination
is a difficult task requiring clear and concise directions.
Predicting what directions will be most useful is challeng-
ing, but generative models offer a powerful tool towards
accomplishing this goal. By using a generative model to
describe the potential actions made by the wayfinder (the
person following the directions), we can compute plans based
on predictions about those actions.

Modern GPS navigation systems on phones and deployed
in cars typically optimize over travel time or distance traveled
instead of focusing on the ease of following the directions.
Verbal turn reminders and visual depictions of the actions
in question mitigate the difficulties in following these routes
that may arise from sub-optimal routing through confusing
areas. Easy-to-follow plans should be robust to lacking these
cues and can be applied to GPS denied situations or to other
un-instrumented environments.

Take, for example, a regional hospital. These hospitals
are often large and full of difficult-to-navigate hallways.
Hospitals typically have staffers handle queries and direct
people to their destinations. However, this could be done
efficiently and effectively by guide robots stationed at the
entrances, as well. Such a system could return information
about the locations of patients, particular wards, or the offices
of certain doctors. Indeed, the only missing piece is the
ability to generate a clear set of directions about how to
get to the location of interest.

The authors are with the Department of Computer Science and En-
gineering, The University of Michigan, Ann Arbor, MI, {rgoeddel,
ebolson}@umich.edu, http://april.eecs.umich.edu

(a) Bad shortest path directions (b) Key (c) Best shortest path directions

Fig. 1: Simulated wayfinder routes for two sets of shortest-path
directions. Paths taken by simulated wayfinders for two sets of
shortest-path directions are shown, with colors shown in (b) de-
noting the percentages of simulated wayfinders traversing a given
path segment. The maximum likelihood set of directions may still
result in many wayfinders deviating from the specified route. By
exploiting knowledge of the wayfinder model to select error tolerant
directions, (c) guides more wayfinders to the goal than (a).

In this paper, we will motivate and formulate a method
for incorporating generative models of wayfinders into the
direction-planning process. We will discuss scalability issues
and propose optimization techniques for tackling these prob-
lems. Finally, we will present a method we call Direction
Approximation through Random Trials, or DART, that uses
particle-based estimation techniques to find effective sets
of directions between points in a map. Action costs are
determined by a generative model describing the wayfinder
and the environment, rather than a fixed action cost DART
approximates the search for the maximum likelihood solution
to the problem, rapidly providing paths that take advantage
of landmarks and other environmental structure to guide the
modeled wayfinder to their goal. Our main contributions are:

• The formulation of the wayfinding problem incorporat-
ing a generative probabilistic model capable of approx-
imating human wayfinding capabilities,

• Strategies for optimizing depth-first search in the con-
text of wayfinding,

• DART, a tractable, particle-based method for computing
directions optimized based on a supplied generative
model of the wayfinder and the environment, and

• Evaluation of DART’s performance and a framework
for evaluating the effectiveness of a set of directions.

II. RELATED WORK

A. Understanding Directions in the Context of Environment

Extensive effort has gone into studying the process of con-
structing “good” directions. Lynch contributed early thoughts
to the literature in his book, The Image of the City [1]. Lynch
observed that knowledge of environmental structure plays an
important role in wayfinding.

Kuipers explored the cognitive maps of humans and how
we navigate through the world [2]. With TOUR, he modeled
human understanding of their surrounding environment as
well as the process with which they navigate through that
environment. Others have explored internal world represen-
tations and their impact on giving and following directions,
finding that, even given human weaknesses in preserving spa-
tial information, efficient and effective direction generation
is closely linked with strong spatial abilities [3], [4].

MacMahon created MARCO, an agent designed to follow
natural language directions [5]. MARCO models human
reasoning about verbal directions, which are often unclear
or incomplete. Particularly for directions considered “high
quality” by human evaluators, MARCO was able to follow
these directions with near-human consistency. Models such
as MARCO enable accurate evaluation of direction quality.

B. Wayfinder Abilities

People have been shown to process different types of
directions with varying levels of quality. Though humans
have a tendency to give street directions in terms of “go N
blocks and turn,” these directions are the easiest for people to
follow [6]. It has further been shown by Hund and Minarik
that wayfinding abilities vary noticeably with gender, with
men typically navigating more quickly than women [7].

Metrically based directions are popular in GPS navigation
systems and in other commonly used routing tools, but
humans have been shown to be inaccurate estimators of
distance. Cohen et al. showed that geography plays a role
in distance estimation [8]. Thorndyke showed that distance
estimation error could be tied to the amount of clutter in the
environment [9].

Landmarks have been shown to be useful as navigational
aids. Directions often use andmarks to guide followers
through tricky regions or to help localize them, and extensive
work has been done to determine when and why such
landmarks are useful [10], [11], [4]. Further consideration
has been given to identifying landmarks and automatically
extracting them from the environment [12], [13].

C. Route and Direction Generation

Elliot and Lesk studied how to replicate human direction
giving abilities [14]. The authors observed that humans fol-
lowed a guided depth-first search strategy, and they were able
to generate similar paths through the use of a heuristically
guided depth first search penalizing turning. Duckham and
Kulik created a system for generating “simplest paths” based
on a metric for evaluating the cost of different turn actions
(turning at a T-intersection is typically better than turning at
a 4-way intersection) and finding the path that minimizes this

cost [15]. This technique was further modified to deal with
complex intersections, avoiding such areas while attempting
to keep path lengths short [16].

Richter and Klippel defined a strategy for generating what
they call “context-specific route directions,” directions which
use knowledge of the structure of the environment to come
up with easy-to-follow directions [17], later implementing
this in the form of GUARD, a method for generating such
directions [18]. GUARD considers turn distinctions (right
vs. slight right) as well as landmarks in the environment
to describe a given path in the best way possible. Later,
Richter and Duckham created a method for generating the
“simplest instructions” [19]. This method combines Richter’s
GUARD method with cost metrics used by Duckham and
Kulik in computing simple paths to create more effective
sets of directions. In doing so, the technique not only finds
a simple path through the environment, but also considers
how the description of that path will affects followability.

With the exception of the “simplest instructions” algo-
rithm, the main weakness of the previous work is the
separation of path selection from path description. These
processes are not independent. For example, the “simplest
path” may still not be as easy to describe as a path with a
few more turns but many landmarks along the way.

Richter and Duckham address this concern, incorporating
additional cost metrics to take into account what they refer
to as the cognitive cost of actions. As a result, both the
simplicity of the path as well as the ease of interpreting
directions along that path are considered when choosing
directions. However, the algorithm does not attempt to deal
with ambiguous descriptions of the environment. Our pro-
posed method replaces the concept of cognitive cost with
weight based on expected success rates for following given
directions. As a result, properties such as environmental
ambiguity are automatically incorporated into the weights.

III. INCORPORATING WAYFINDER MODELS INTO
PLANNING

Evaluating successful arrival at the goal involves not
only understanding how well people are able to follow the
specified path, but how well they are able to recover when
they deviate from it. Using a generative model offers a
principled approach to evaluating the cost of an action. Given
a set of directions, we can sample from our model (repre-
senting the distribution p(x|d), or wayfinder position given a
direction) and observe the resulting trajectories. From these
observations, we gain situation-specific knowledge about the
effectiveness of particular directions in our environment.

We formulate the direction finding task as an optimization
problem. We assume that we are given a model m consisting
of a map of the world and generative model that allows us
to predict wayfinder actions for certain instructions. Then,
assuming the wayfinder starts at position xstart and ends at
xfinal, our goal is to select a set of directions d maximizing
the probability that the wayfinder reaches their goal:

argmax
d

p(xfinal = destination|d,m) (1)

Fig. 2: A hand-constructed map for simulated testing. This map
covers an area roughly 11 km × 5 km and contains 167 nodes and
135 landmarks. Landmarks were generated and placed randomly
from a family of 15 unique landmarks.

Particle simulation has proven to be a useful tool for nav-
igation problems [20]. We employ it here to estimate the
distribution of wayfinder positions given a set of directions.
A naı̈ve algorithm to find the best directions could generate
every possible set of directions and run particle simulation
for each set. The best directions would be the set for which
the most particles arrived at the goal.

Fig. 1 shows an example of how such a technique can
take advantage of a model to pick the best directions. In this
environment, we are attempting to navigate from the black
square in the lower left to the black star in the upper right.
The last two directions of a plan can be described as “Go
until you stop at a T-intersection and turn left,” and then
“Go until you reach a dead end and you will have arrived at
your destination,” regardless of which of several horizontal
crossroads you pick.

Fig. 1a shows the paths followed by simulated wayfinders
for a set of directions following a shortest path. By chance,
this happens to guide us to one of the aforementioned
crossroads. However, due to the distance traveled to this
crossroad and lack of good landmarks, many of our particles
get lost.

A more complete search of the space based on our model
turns up the directions highlighted by Fig. 1c. Many of the
simulated particles make mistakes (in fact, the percentage
of simulated wayfinders following every direction perfectly
does not vary greatly between the two plans), but knowledge
provided by our model allows us to position our plan among
several acceptable crossroads so that erring wayfinders that
turn late are more likely to turn onto a road that still allows
them to correctly execute the later instructions. As a result,
twice as many particles are able to navigate to the goal in
Fig. 1c as in Fig. 1a.

A. Simulation and Model Formulation

We employ simulations, which allow us to rapidly evaluate
the effects of employing different models as well as greatly
accelerate and simplify the data collection process. To fa-
cilitate rapid implementation and testing, test environments
were limited to planar graphs with only right angle turns
(see Fig. 2 for a sample instance). For evaluation, three main
environments were created by hand and randomly populated

with landmarks, as well as a set of four environments used for
collecting additional timing data. We assume that landmarks
only affect one known decision point and that the direction
from which we approach the intersection does not affect
the usefulness of the landmark. As results were consistent
across environments, we limit the presentation of results in
this paper to the map seen in Fig. 2.

We employed four different categories of directions that
our modeled wayfinder can understand. These were:
• METRIC: Go X m and turn
• INTERSECTION: Go to the Xth intersection and turn
• LANDMARK: Turn when you see landmark X
• GO UNTIL: Go in this direction until forced to make

a choice and turn
We created a simple model based on previous literature
in which humans become increasingly poor at counting
intersections/measuring distances as the numbers in question
become large. Conversely, LANDMARK and GO UNTIL
directions were modeled as remaining robust regardless
of distance, as previous research indicates that people are
much better at following these types of instructions. We
also represent the limitations of human memory with a
fixed probability for which any given direction might be
“forgotten,” implicitly penalizing longer direction sets as
being more difficult to follow.

To ensure that the directions generated were actually
influenced by the model, we repeated tests with perturbed
variations of the model. We expect, for example, that dramat-
ically reducing the quality of LANDMARK directions should
result in plans using them less often. Further discussion and
results from these tests will be presented in Sec. IV-B. We
also present results on the arrival rates of the wayfinder with
varying direction-giving strategies. These numbers are not
presented to show that our model is the state-of-the-art (it
is not), but rather that the addition of a model to planning
improves wayfinding performance.

B. Finding Directions Maximizing Arrival Rate

To find the most effective set of directions for getting
the wayfinder to the goal, we search through the space of
possible directions, estimating the probability of reaching
our goal using particles. If a particle makes a mistake that
leaves it unable to execute the next direction, we consider
this particle “lost” and mark it so. Otherwise, we continue
simulating the particle’s decisions by sampling randomly
from the distribution of possible actions defined by our
model. We score a set of directions based on how many
particles finish at the goal.

Searching for the maximum likelihood plan is challeng-
ing, though, given the variety of space and computation
complexity issues that arise. The number of decisions to
make from any given intersection is generally larger than just
the node degree × the number of possible direction types
(already a distressingly large branching factor). Directions
do not merely describe how to get to immediately adjacent
intersection, but possibly to a location many intersections
away. This large branching factor makes breadth-first search

Tu
rn

 L
E
FT

 a
t
th

e
 S

T
O

P
 S

IG
N

Tu
rn

 L
E
F
T
 i
n
 1

.2
k
m

Tu
rn

 L
E
F
T
 a

t th
e
 C

A
T
H

E
D

R
A

L

...

Tu
rn

 LE
FT

 a
t th

e
 3

rd
 LIG

H
T

Tu
rn

 R
IG

H
T
 a

t
th

e
 .
..

G
o
 2

 B
L
O

C
K
S
 a

n
d
 .
..

...

Tu
rn

 R
IG

H
T
 in

 5
.1

k
m

Tu
rn

 R
IG

HT in
 4

.2
km

Fig. 3: A small portion of a depth-first search through direction
space. The distribution of particles through the environment is
shown at several of the decision steps as red circles, with larger
radii corresponding to higher particle densities.

(BFS) intractable, particularly in regards to memory usage,
so we employ an iteratively deepening depth-first search
(DFS) to determine the best set of directions, a small portion
of which is depicted in Fig. 3.

Our algorithm can be summarized:
1) Initialize a “plan” with many particles and an empty

set of directions and add it to a stack.
2) While the stack still has entries, pop the top entry and

consider all possible, non-backtracking directions that
can be taken from the current position as defined by
the model.

3) Make copies of the plan for each possible direction
and simulate particles following that direction. Now
the particles form some new distribution of positions
and states in the world.

4) Sort the plans by distance of theoretical position to the
goal and, if they do not violate our “depth” constraint,
add them to the stack.

5) If iteratively deepening, repeat until a plan is found,
increasing the search depth as necessary.

Some pruning may be performed by tracking how many
of the particles are “lost.” If the number of lost particles
drives our total potential success rate below the minimum
search depth, we prune out that plan. Likewise, if we find a
solution reaching the goal with a success rate exceeding our
minimum search depth, we may shift the minimum depth
upwards to reflect this knowledge.

Runtime increases proportionately with the number of
particles simulated, but the depth of the search is dependent
on the structure of the map and the wayfinder’s abilities.
However, if we assume that the maximum search depth is

1.00

 START

0.89

Turn LEFT at the CATHEDRAL

0.86

Go 2 BLOCKS and turn RIGHT

0.83

0.82

Turn RIGHT at the T

Turn LEFT at the STOP SIGN Go 3 BLOCKS and you will

arrive at your destination

1.00

0.891.00

0.86

0.891.00

0.830.86

0.891.00 0.82

0.830.86

0.891.00

0.80

Fig. 4: An small example of a DART search. At each step, DART
expands the node with the largest number of on-track particles
(depicted in green) and adds it to a closed-list (depicted in red).
When the goal node is expanded, the search ends.

d and our model can be applied to a direction in constant
time, then for number of particles P and branching factor b,
the worst-case asymptotic runtime of our DFS is O(Pbd).
As will be discussed in Sec. IV, we found that, even with
our optimizations, the search times for non-trivial sets of
directions were too long to be of use, indicating that our
pruning is unable to substantially reduce the search space.

C. Direction Approximation through Random Trials

Since we cannot always afford to compute the best pos-
sible set of directions for an environment with our DFS
method, we instead seek to quickly approximate the best
directions while still making use of our model. One of the
main difficulties with optimizing the depth-first search is that
plan quality does not decrease monotonically as the search
progresses. Though a particle may not be on the directed
route at a given step, this does not preclude it getting back
on course and successfully reaching the goal. As a result,
we are conservative when eliminating potentials plans from
consideration. For DART, we take an aggressive approach,
treating particles that are off course as irrecoverable when
evaluating current plan quality. We make this decision based
on the belief that situations in which the environmental
structure allows particles to recover are rare. Thus, the losses
in plan quality are negligible. Based on these assumptions,
we may now build a more rapid search.

Given this assumption, the problem is greatly simplified.

p(xfinal = destination|d,m) ≈
|d|∏
i=0

p(di|m, di−1) (2)

In (2), p(di|m, di−1) is the probability of executing the ith

0 0.2 0.4 0.6 0.8 1
0

5

10

15

F
re

q
u
e
n
c
y

Plan Success rate

0.13592

(a) METRIC-only shortest-path

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

F
re

q
u
e
n
c
y

Plan Success rate

0.56566

(b) Model-optimized shortest-path

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

F
re

q
u
e
n
c
y

Plan Success rate

0.6252

(c) DART

Fig. 5: Histograms of successful arrival rates for METRIC-only shortest-path, model-optimized shortest path, and DART best path directions
for every pair of nodes in the map depicted in Fig. 2. The mean is denoted by a vertical black line, with horizontal bars extending out
one standard deviation. Area under the curve sums to 1.0.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

F
re

q
u
e
n
c
y

Plan Success rate

0.18619

(a) Metric-only shortest-path

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
F

re
q
u
e
n
c
y

Plan Success rate

0.57102

(b) Model-optimized shortest-path

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

F
re

q
u
e
n
c
y

Plan Success rate

0.60995

(c) DART

Fig. 6: Histograms of success rates for METRIC-only shortest-path, model-optimized shortest path, and DART best path directions for
every pair of nodes in the map depicted in Fig. 2 when employing our perturbed model.

instruction successfully. The success of a plan, then, is based
on the success of executing each individual direction in the
plan. We may make this claim because we expect each
additional instruction to, at best, leave the probability of
the wayfinder reaching unchanged and at worst decrease it.
Therefore, actions may be considered in sequence. Looking
back to (1), this means our optimization problem is now:

argmax
d

|d|∏
i=0

p(di|m, di−1) (3)

Now the problem resembles a traditional shortest-path graph
algorithm, in this case with edge weights equal to the proba-
bility of following the next direction. To find the optimal path
to all destinations from a given start point, we apply a version
of Dijkstra’s single-source shortest path algorithm [21] to
find the best set of directions to any given point. A short
example of the resulting search process can be seen in Fig. 4.

We track potential plans in a priority queue, keeping
plans with more particles that have correctly followed the
directions so far at the top of the queue. During the expansion
calls, we generate the copies of the plan, including the state
of all of the current particles, for each possible next direction
and simulate taking that step before adding the new plans to
the priority queue. A straightforward implementation of this
algorithm performs in O(|P ||D||E|+|V | log |V |), where |P |
is the number of particles to simulate, |D| is the number of
possible direction types, and |E| and |V | are the number of
edges and vertices, respectively.

IV. RESULTS

To evaluate our technique, we constructed environments in
simulation as discussed in Section III-A. Simulations were
performed with 1000 particles per plan, unless otherwise
noted.

A. DART vs. Shortest-Path plans

Our metric for evaluation is the successful arrival rate of
our simulated particles. Higher percentages imply better sets
of directions according to the model, since more particles
were able to successfully execute the plan. The “forgetfulness
factor” acts to penalize longer plans, and for our parameter
settings results in periodic peaks in our distribution of
direction quality corresponding with the number of directions
given (and thus more opportunities for forget directions
and become lost). As a baseline, we compared directions
generated based on our wayfinder model to the standard of
the day: shortest-path based METRIC directions. Since it
is commonly accepted in the literature that fewer turns are
preferable to many, we choose the shortest path with the
fewest turns when evaluating.

We first use our model to compute the best directions
to follow the same shortest-path described by the metric-
only plan. Given knowledge of the model, the quality of
the plan should only increase, at worst selecting only metric
directions. Second, we compute directions using DART,
searching beyond the bounds of the shortest-path to see if
plan quality can be improved.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

#
 O

c
c
u
rr

e
n
c
e
s

Distance [m]
0 1000 2000 3000 4000 5000 6000 7000 8000

0

200

400

E
rr

o
r

S
td

d
e
v
 [
m

]

METRIC model 1

METRIC model 2

Fig. 7: The distribution of possible METRIC direction distances
compared to the stddev in error for the two test models employed.

For every start/goal pair in the environment depicted in
Fig 2, we computed a plan using the METRIC-only shortest-
path method, model-based shortest-path method, and DART.
The resulting distributions of success rates can be seen in
Fig 5. As expected, METRIC-only directions proved hard
to follow for our modeled wayfinder. By employing the
model to improve direction selection along the shortest path,
we were able to greatly improve arrival rates, but limiting
the directions to describing the shortest path still leaves
room for improvement. DART returns the directions yielding
the highest mean success rate, taking advantage of longer,
more easy-to-follow routes deviating from the shortest path.
However, DART only offers a small improvement on the
optimized shortest-path directions. In part, this is due to
the data collection strategy. By computing directions for
all possible start/goal pairs, we ensure many very simple
sets of directions will be generated where it is unlikely that
anything other than the straight-line shortest path will offer
significant gains in performance. In these situations, DART
and optimized shortest-path directions should look identical.
DART shines when computing plans for longer paths where
errors become more likely or the shortest path becomes more
complex.

The downside to DART is that, be definition, the routes
it selects are of equal length or longer than those selected
by the shortest-path strategies. To gain a better picture of
how much DART deviates from the shortest path, we also
collected travel distances for our three evaluation methods.
As expected, the improvements in arrival rate come at the
price of distance traveled. The worst-case increase between
plan distances is roughly 20%.

B. Effects of Model Variation

We wish to verify two properties of DART: first, that our
improvement over METRIC-only directions is not solely due
to our model excessively penalizing these directions and sec-
ond, to show that DART is able to adapt to different models.
We, performed a second test with a model greatly penalizing
the wayfinder’s ability to recognize landmarks while improv-
ing intersection counting and distance tracking abilities. As a

10
2

10
3

0

1

2

3

4

T
im

e
 [
s
]

of Particles
10

2
10

3
0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 S

u
c
c
e
s
s
 R

a
te

Fig. 8: Plan computation time (blue solid) vs. success rate (red
dashed) for four maps of varying complexity and varying quantities
of particles. Please note the log scale.

result, we expect the improved performance across METRIC
and INTERSECTION directions to be reflected in the types
of directions chosen. Further, the performance of METRIC-
only shortest-path directions should improve.

We model METRIC direction following capabilities with
a Gaussian centered at the requested direction distance. The
variance of this Gaussian grows as the mean grows larger,
following the form:

σ2 =
µ

k
log(µ+ 1) (4)

where µ is measured in kilometers and k is a parameter.
Our METRIC model is loosely based on the literature

stating that humans have trouble with large numbers [6].
The leading µ term is multiplied by a log term representing a
slow-percentage of the distance requested. The k term scales
this percentage. We chose to model the proportional increase
as slowly growing instead of linearly proportional based off
of the intuition that, when traveling much longer distances, it
becomes increasingly difficult to remember exactly how far
one has traveled The Gaussian was selected for simplicity.

For the results already presented, we used the parameter
k = 200, meaning the large majority of wayfinders traveling
1 km will travel a distance within roughly 0.1 km of this
amount. To improve the quality of METRIC directions in our
second model, we set k = 1000, as a result roughly halving
the expected error in metric directions. As seen in Fig. 7,
around half of the possible directions in our testing space
fall at or under the 2 km mark, so the majority of METRIC
directions considered will be followed fairly accurately.

With our modified model, the penalized LANDMARK
type directions completely disappear in favor of the now
more reliable INTERSECTION and METRIC directions.
METRIC directions, in particular, benefit from a vast in-
crease in modeled wayfinder following ability. This high-
lights our method’s ability to successfully adapt to varying
models as well as improve greatly on the standard practice
of only issuing METRIC directions along the shortest path.

Fig. 6 shows the success rate distributions based on
our perturbed model. Enhancing the reliability of METRIC

directions helps the metric-only shortest-path plans, but these
solutions still lag behind the model-optimized shortest-path
and DART best directions. DART still computes the best
plans of the three, and with tight distribution of success rates.

C. DFS vs. DART

Though the full DFS described in Sec. III-B can be used
to create directions that more-easily recover from error, we
were interested in seeing how much this actually matters.
Attempts to collect data comparing DART to DFS at the
same scale as our DART vs. shortest-path data sets were
impractically computationally expensive for 1000 particles.
Instead, we tested the two on the small environment seen in
Fig. 1. The environment was designed to offer many routes
between points with similar structure to see how much DFS
could benefit from its more complete search.

Even at this small scale, DFS of ∼1600 examples was
time consuming, taking 17.7 hrs to compute, or an average
of 40 s/plan compared to 0.5 s/plan for DART. As expected,
DFS computes some routes that dramatically improve on the
results of DART. Typically, however, DART was able to find
equivalent or near-equivalent routes to DFS. This suggests
that, generally, one set of directions is so clearly the best
that there is little to gain baking error recovery into the plan.

D. The Effect of Particle Population on Performance

It is desireable to determine how many particles to use in
simulation. We would like to balance the speed of algorith-
mic performance against the accuracy of our representations
of the distributions of directions. To determine this value,
we consider two metrics: the time is takes to return a query
and the quality of the solution. We expect quality to increase
with particle quantity while performance speed will suffer.

We performed trials for 100, 500, 1000, and 5000 particles
on 4 maps of gradually increasing complexity. The maps in
question had 29, 55, 98, and 167 decision points, respec-
tively, and branching factors ranging from 8.4 to 11.9 before
considering direction type.

For each map/particle number combination, we ran 50
planning trials on each of 50 randomly chosen start/goal
pairs and computed the mean planning time as well as the
mean success rate across trials. The results can be seen
in Fig. 8. Returns in plan quality for additional particles
diminish rapidly, showing almost no change when increasing
the number of particles from 1000 to 5000 particles. Based
on this data, 1000 particles seem to be the happy medium
between guaranteed performance and quick (sub-second)
computation at our testing scales.

V. CONCLUSIONS

In this work, we formulated a strategy for constructing
reliable textual directions given a generative model of a
wayfinder. We developed two particle simulation techniques
for determining the best set of directions between two
points, given this model. Using such techniques, we are
able to find directions through the environment that utilize

knowledge of their surroundings such as landmarks in ad-
dition to harnessing knowledge about the ways in which
the wayfinder will err to pick directions facilitating error
recovery, when appropriate. Our preliminary results show
that, even given very simple models and minimal knowledge
of the environment, particle methods offer an improvement
over currently-employed shortest-path methods and can adapt
well to varying models.

REFERENCES

[1] K. Lynch, The Image of the City, ser. Publications of the Joint Center
for Urban Studies. Technology Press, 1960.

[2] B. Kuipers, “Modeling spatial knowledge,” Cognitive Science, vol. 2,
no. 2, pp. 129–153, 1978.

[3] E. J. Vanetti and G. L. Allen, “Communication Environmental Knowl-
edge: The Impact of Verbal and Spatial Abilities on the Production
and Comprehension of Route Directions,” Environment and Behavior,
vol. 20, no. 6, pp. 667–682, November 1988.

[4] K. Lovelace, M. Hegarty, and D. Montello, “Elements of Good
Route Directions in Familiar and Unfamiliar Environments,” in Spatial
Information Theory. Cognitive and Computational Foundations of
Geographic Information Science. Springer Berlin / Heidelberg, 1999,
vol. 1661, pp. 751–751.

[5] M. T. Macmahon, “Following natural language route instructions,”
Ph.D. dissertation, Austin, TX, USA, 2007.

[6] L. A. Streeter, D. Vitello, and S. A. Wonsiewicz, “How to tell people
where to go: comparing navigational aids,” International Journal of
Man-Machine Studies, vol. 22, no. 5, pp. 549 – 562, 1985.

[7] A. M. Hund and J. L. Minarik, “Getting From Here to There: Spatial
Anxiety, Wayfinding Strategies, Direction Type, and Wayfinding Effi-
ciency,” Spatial Cognition & Computation, vol. 6, no. 3, pp. 179–201,
2006.

[8] R. Cohen, L. M. Baldwin, and R. C. Sherman, “Cognitive Maps of
a Naturalistic Setting,” Child Development, vol. 49, no. 4, pp. pp.
1216–1218, 1978.

[9] P. W. Thorndyke, “Distance estimation from cognitive maps,” Cogni-
tive Psychology, vol. 13, no. 4, pp. 526 – 550, 1981.

[10] M. Denis, F. Pazzaglia, C. Cornoldi, and L. Bertolo, “Spatial discourse
and navigation: an analysis of route directions in the city of Venice,”
Applied Cognitive Psychology, vol. 13, no. 2, pp. 145–174, 1999.

[11] P.-E. Michon and M. Denis, “When and Why Are Visual Landmarks
Used in Giving Directions?” in Spatial Information Theory, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2001, vol. 2205, pp. 292–305.

[12] C. C. Presson and D. R. Montello, “Points of reference in spatial
cognition: Stalking the elusive landmark*,” British Journal of Devel-
opmental Psychology, vol. 6, no. 4, pp. 378–381, 1988.

[13] G. Burnett, D. Smith, and A. May, “Supporting the navigation task:
characteristics of ‘good’ landmarks,” in Proceedings of the Annual
Conference of the Ergonomics Society, November 2001, pp. 441–446.

[14] R. J. Elliott and M. Lesk, “Route Finding in Street Maps by Computers
and People,” in AAAI, 1982, pp. 258–261.

[15] M. Duckham and L. Kulik, ““Simplest” Paths: Automated Route
Selection for Navigation,” in COSIT, 2003, pp. 169–185.

[16] S. Haque, L. Kulik, and A. Klippel, “Algorithms for Reliable Nav-
igation and Wayfinding,” in Spatial Cognition V Reasoning, Action,
Interaction, ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2007, pp. 308–326.

[17] K.-F. Richter and A. Klippel, “A Model for Context-Specific Route
Directions,” in Spatial Cognition IV. Reasoning, Action, Interaction,
ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2005, vol. 3343, pp. 58–78.

[18] K.-F. Richter, “A uniform handling of different landmark types in
route directions,” in Spatial Information Theory. Springer Berlin
/ Heidelberg, 2007, vol. 4736, pp. 373–389.

[19] K.-F. Richter and M. Duckham, “Simplest Instructions: Finding Easy-
to-Describe Routes for Navigation,” in GIScience, 2008, pp. 274–289.

[20] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2001.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

