
Real-Time Correlative Scan Matching
Edwin B. Olson

University of Michigan
Department of Electrical Engineering and Computer Science

Ann Arbor, MI 48109
Email: ebolson@umich.edu
http://april.eecs.umich.edu

Abstract— Scan matching, the problem of registering two laser
scans in order to determine the relative positions from which
the scans were obtained, is one of the most heavily relied-upon
tools for mobile robots. Current algorithms, in a trade-off for
computational performance, employ heuristics in order to quickly
compute an answer. Of course, these heuristics are imperfect:
existing methods can produce poor results, particularly when
the prior is weak.

The computational power available to modern robots warrants
a re-examination of these quality vs. complexity trade-offs. In this
paper, we advocate a probabilistically-motivated scan-matching
algorithm that produces higher quality and more robust results
at the cost of additional computation time. We describe several
novel implementations of this approach that achieve real-time
performance on modern hardware, including a multi-resolution
approach for conventional CPUs, and a parallel approach for
graphics processing units (GPUs). We also provide an empirical
evaluation of our methods and several contemporary methods,
illustrating the benefits of our approach. The robustness of the
methods make them especially useful for global loop-closing.

I. INTRODUCTION

Consider a robot sensing an environment from two poses
x0 and x1; at each position, it obtains a two-dimensional lidar
scan (z0 and z1). These lidar scans capture a horizontal cross-
section of the environment typically sampled at one degree
intervals. Provided that some parts of the environment are
visible from both x0 and x1, it is generally possible to find
a rigid-body transformation T that will project the points z1

so that they align with z0. This process of matching the scans
z0 and z1 is known as scan matching. The solution to a scan
matching problem is the rigid-body transformation T , which is
parameterized by three values: two translational components
(∆x and ∆y) and a rotational component (θ). Aside from
being an interesting perceptual problem, scan matching is at
the center of most navigation, mapping, and localization sys-
tems. This is because the rigid body transformation T exactly
corresponds to the motion of the robot as it travelled from
x0 to x1. Since lidar-derived data is typically of far-higher
quality than odometry (which is prone to unpredictable wheel
slippage), scan matching plays a central role in estimating the
motion of the robot.

The primary challenge in designing a scan matcher is to
minimize the runtime complexity while maximizing the qual-
ity (and robustness) of the solutions. Most existing methods are
designed around computationally-efficient local searches that
produce answers quickly, but are not robust to initialization

Fig. 1. Correlation (3D) Cost Function. Given two laser scans (bottom),
we compute a rigid-body transform that aligns them by computing the cost
function in three dimensions (translation in x̂ and ŷ) and θ). Each tile
represents a slice of the cost volume for a fixed θ. The numerical maximum
is then identified (white cross hairs).

error. The problem is that scan matching, when viewed as an
optimization problem, is rarely convex: the cost surface can be
very complicated, having many local minima (see Fig. 1). The
vehicle’s dead-reckoning error can cause the initial estimate to
be far from the global maximum; as a result, many approaches
fail to identify the global maximum.

This paper describes a family of scan matching algorithms
based upon cross-correlation of two lidar scans. Our approach
casts the problem in a probabilistic framework: it finds the
rigid-body transformation that maximizes the probability of
having observed the data. Rather than trusting a local search
algorithm to find the global maximum (an approach that does
not work well in the presence of initialization noise, as we
will illustrate), we perform a search over the entire space of
plausible rigid-body transformations. This plausible region is
derived from a prior which, in turn, can be derived from the
commanded motion or wheel/visual odometry.

The central contributions of this paper are:
• We describe the theoretical and practical advantages of a

correlative scan matching approach.
• We present a multi-resolution implementation capable of

real-time operation on a conventional microprocessor;
• We show how the correlation-based method can be

mapped onto a Graphics Processing Unit (GPU), freeing
the CPU for other tasks.

• We show how covariance estimates can be obtained from
the matching operation.

• We present a thorough empirical evaluation of our meth-
ods versus three different algorithms in common use.

The quality and robustness of our methods, coupled with
their ability to operate in real-time, make them ideal for any
robotic platform in which robustness and accuracy are of high
importance. Naturally this includes Simultaneous Localization
and Mapping (SLAM) applications, but virtually any naviga-
tion or localization system would benefit.

We begin the paper with a brief review of previous work
(Section II). Our CPU and GPU based methods are described
in Section III. Section IV describes our empirical evaluation
methods and compares the performance of our method to
several methods in wide use.

II. PRIOR WORK

Iterative Closest Point (ICP) [1], [2] and Iterative Closest
Line (ICL) [3], [4], [5] are used pervasively in scan matching.
In ICP, each point in the query scan is associated with the
reference scan according to a distance metric (most commonly
Euclidean distance). A rigid-body transformation that best
aligns the reference and query points can then be computed.
Horn’s exact closed-form algorithm [6] is especially well
suited to the task.

Lu and Milios [7] describe two scan matching methods
based on ICP. The first method considers the rotational and
translational components separately: alternately fixing one,
then optimizing the other. Given rotation, least-squares is used
for optimizing translation. A search over rotations is conducted
using the global-section method [8]. Their second method,
dubbed IDC, combines two ICP-like algorithms with different
point-matching heuristics.

ICL is similar to ICP, except that instead of matching query
points to reference points, the query points are matched to lines
extracted from the reference points. This approach is motivated
by the fact that the sensor samples the environment sparsely,
and that different lidar scans may sample different parts of
the environment. In other words, even if the environment is
the same in the reference and query scans, there may not be
reasonable correspondences for all the points. The simplest
ICL variants interpolate lines between each pair of adjacent
lidar points, but this is undesirable in many cases (e.g. banis-
ter railings and depth discontinuities). Alternatively, heuristic
methods can be used to determine which pairs of points are
likely to be part of a connected surface, or lines/splines can
be extracted from larger sets of points [9], [3], [4]. As part
of his work on the robot Blanche, Cox described one of the

Fig. 2. Graphical model for probabilistic scan matching. xi−1 represents the
previous position of the robot, u the motion of the robot, xi the new robot
position, m the world model, and z the laser scan observation.

earliest ICL scan matching algorithms [10]. It is interesting
to note that the algorithm, running on hardware available at
the time, achieved an update rate of 0.125 Hz. It is generally
desirable for scan matching methods to produce covariance
estimates, and Cox suggested using the uncertainty estimate
that falls out from the least-squares formulation. In simple
environments (especially when a low-complexity prior map is
available) this can work well. In practice, however, uncertainty
estimates derived from least-squares are far too confident;
this is because the least-squares step is conditioned on the
data association. Unfortunately, data association is initially
unknown, and iterative methods can fail to compute the correct
correspondences. Since the uncertainty estimate derived from
least-squares does not reflect uncertainty in data association,
the uncertainty estimates tend to be over confident.

The literature is filled with other scan matching heuristics.
These include using polar coordinates [11], the Normal Dis-
tribution Transform, feature-based methods [3], [4], Hough
transforms [12], and histograms [13], [14].

Our work is quite similar in spirit to Konolige’s correlation
based localization approach [15]. While the formulations of
the problem are almost identical, we describe new methods
for computing the answers.

Graphics Processing Units (GPUs) have not yet been widely
used for robotics applications. A literature search revealed
only one paper on motion planning[16]; surprisingly, it is from
1990. We believe our implementation is the first example of
accelerating mapping and localization using a GPU.

III. APPROACH

A. Probabilistic formulation

We model the scan matching problem according to the
graphical model shown in Fig. 2. The robot is moving from
xi−1 to xi, according to some motion u. The observation z
is dependent on the environment model m and the robot’s
position.

Our goal is to find the posterior distribution over the
robot’s position, p(xi|xi−1, u, m, z). We apply Bayes’ rule and
remove irrelevant conditionals, giving:

p(xi|xi−1, u, m, z) ∝ p(z|xi,m)p(xi|xi−1, u) (1)

The first term, p(z|xi,m) is the observation model: how likely
is a particular observation, if the environment and the robot’s

position are known? The second term, p(xi|xi−1, u) is the
motion model of the robot, as obtained (for example) from
control inputs or odometry.

While the motion model is typically known in terms of a
multivariate Gaussian distribution, the observation model is
more difficult to compute and more complex in structure. It
generally has multiple extrema, for example, as seen in Fig. 1.

The central contribution of this paper is a method for
efficiently computing the distribution p(z|xi,m) so that we can
compute the posterior distribution of the robot’s position (as in
Eqn. 1). While previous authors have suggested hill-climbing
in order to find local maxima of p(z|xi,m) (in hopes of
obtaining the maximum likelihood solution), our approach will
more thoroughly characterize the distribution. Our approach
results in both a more robust maximum likelihood estimate
and a principled uncertainty estimate.

Like previous work, we assume that each individual lidar
return zj is independent, allowing us to write:

p(z|xi,m) =
∏
j

p(zj |xi,m) (2)

The probability distribution for a single lidar sample zj should,
in principle, consider which surface of the map m would
be visible from position xi along a particular bearing. This
would require an expensive ray-casting type operation. Like
others [15], we neglect visibility and occlusion effects, and
approximate the probability of zj in terms of its distance from
any surface in m.

In a Simultaneous Localization and Mapping (SLAM)
context [17], the model m is derived from previous lidar
observations. In other cases, the model m may be known in
advance [10].

B. Lookup-Table Rasterization

The computation of the probability p(z|xi,m) can be accel-
erated by building a 2D lookup table. We follow the approach
of previous approaches [18], [19] by pre-computing a lookup
table containing log probabilities of lidar observation at each
(x, y) position in the world.

Our rasterization process begins with map m. For each
observable point mi in the map, we can the compute the
conditional probability that the sensor observes a nearby point
p given that mi was the cause of that observation. We repeat
this process for each point in the map, recording the maximum
probability for each point in the lookup table. Since our
lookup table must be viewpoint independent, we approximate
the potentially banana-shaped distribution arising from the
sensor model (which has independent range and bearing noise)
as a radially-symmetric distribution. With currently available
sensors, this seems to be a reasonable approximation. The
resulting lookup table can be visualized as an image, as seen
in Fig. 3.

A critical question is: “where does the model m come
from?” In rare cases, a model is known in advance [10],
but more often, the model must be estimated from previous
observations of the environment. Estimating this model is a

complex issue on its own, and in the limit, requires a full
solution to the SLAM problem.

In this paper, we will simply use an earlier laser scan (the
reference scan) as our model. This approach has the advan-
tages of being easy to implement, robust (in that model cannot
diverge due to earlier data association errors), and perhaps
most pragmatically, serves as a baseline implementation aiding
replication of our results. More sophisticated implementations
can build up more detailed models by combining multiple
scans (e.g. CARMEN’s Vasco), or by extrapolating continuous
surfaces from lidar points [4].

Fig. 3. Rasterized Cost Table. Given a reference scan, the log-probability of
observing a new point is encoded in a lookup table. Top: the reference scan,
bottom: the resulting lookup table. Bright values indicate large probabilities.

C. Approach Overview

To review, our goal is to estimate the distribution p(z|xi,m),
which via Eqn. 1, can be used to obtain the distribution
p(xi|xi−1, u, m, z). Unlike earlier approaches, we are inter-
ested not only in the maximum likelihood value of p(xi|...),
but the distribution itself so that we can obtain a measure of
uncertainty. There is no simple expression for this distribution:
it must be evaluated numerically. In the following two sections,
we will describe two algorithms for rapidly evaluating the
distribution p(z|xi, m) over many values of xi.

D. Multi-Level Resolution Implementation

This section describes a fast correlation based method in-
tended for use on conventional microprocessors. Conventional
CPUs are not well suited to computing vast numbers of
samples of p(z|xi,m). Our approach reflects this, attempting
to minimize the number of evaluations required while 1)
characterizing the distribution over a large area and 2) pre-
cisely locating the maximum likelihood value. We describe our
approach in three pieces: building from a naive implementation
towards our multi-resolution approach.

1) Brute Force: In principle, we need to evaluate p(z|xi,m)
over a three-dimensional volume of points; the three di-
mensions correspond to the unknown parameters of T : ∆x,
∆y, and θ. Our naive implementation consists of three

nested loops; for each voxel, the probability is computed
and recorded. The evaluation at a single voxel involves a
fourth nested loop, iterating over each point in the query scan,
projecting it, and looking up the cost in the lookup table. This
method is quite slow, as our results sections illustrates.

2) Computing 2D Slices: One of the reasons the brute-
force method is slow is that the points in the query scan are
reprojected for each voxel. This is unfortunate, since for a
given value of θ, the projected query points are related by pure
translation for the x̂ and ŷ search directions. In other words,
a significant amount of computational time can be saved by
iterating over θ in the outer-most loop at which time the query
points are properly rotated. The inner two loops (for x̂ and
ŷ) simply translate the query points. This operation can be
made even faster by making the step size of the translational
search match the resolution of the lookup table. This method is
significantly faster than the brute force method, as illustrated
in the results section.

3) Multi-Level Resolution: Our final CPU-based imple-
mentation makes use of two raster lookup tables rendered
at different resolutions. The first is a high-resolution (3 cm
resolution in our implementation) and the second is a low
resolution table (30 cm resolution).

At very low resolutions, it is possible for details in the
reference scan to disappear. Instead, we compute the low
resolution table so that each cell is set to the maximum value
of the corresponding cells in the high-resolution map. This
ensures that the probabilities computed by the low-resolution
map are always at least as large as those in the high-resolution
map. In other words, it guarantees that we will not miss
maxima.

Our strategy is to use the low-resolution map to quickly
identify areas that might contain the global maximum and
areas that probably do not. The goal is to minimize the volume
that is searched at high resolution. The method is:

1) Evaluate the probability p(z|xi,m) over the entire 3D
search window using the low-resolution table.

2) Find the best voxel in the low-resolution 3D space that
has not already been considered. Denote this value as
Li. If Li < Hbest, terminate: Hbest is the best scan
matching alignment.

3) Evaluate the search volume inside voxel i using the high
resolution table. Suppose the log-likelihood of this voxel
is Hi. Note that Hi ≤ Li since the low-resolution map
overestimates the log likelihoods. If Hi > Hbest, set
Hbest = Hi.

This multi-level resolution method is extremely fast, making
real-time correlative scan matching possible. It is also excep-
tionally robust, as illustrated by the results section.

E. Graphics Processor Approach

Graphics Processing Units (GPUs) are capable of very large
computational throughput and are well suited to evaluating a
function like p(z|xi,m) over a range of values. We believe we
are the first to use GPUs in a robot mapping and localization
context.

Our implementation is written as an OpenGL GLSL shader,
rather than a vendor-specific language like NVidia’s CUDA.
While this requires our implementation to cast the problem in
terms of a 3D rendering operation (i.e., computing functions
by drawing textured polygons), the correlative scan matching
method is simple enough to make this straight-forward.

Like the CPU based implementations, we compute “slices”
of p(z|xi, m), fixing the orientation of xi for each individual
tile. Our fragment shader takes two textures as inputs: an
1D array consisting of the query points, and a 2D texture
corresponding to the lookup table. We used the exact same
lookup table in the GPU implementation as in the CPU
implementation.

Each fragment computes the value of p(z|xi,m) for a
particular value of xi. This value is passed to the shader via a
texture coordinate. Each fragment in a polygon automatically
receives a linearly interpolated texture coordinate based on the
texture coordinates specified at the vertices of the polygon.
In other words, when we render polygons to the screen,
the texture coordinates do not correspond to textures at all:
they are interpreted by the fragment shader as the rigid-body
transformation it should apply to the query points.

The fragment shader itself most closely resembles the naive
CPU method: each fragment iterates over the query points,
projecting each point according to the local value of xi, then
fetching the log-likelihood from the lookup table. The shader
simply adds together the log-likelihoods from each pixel and
outputs the resulting value to the frame buffer. The host CPU
can then examine the frame buffer for the maximum likelihood
solution.

On the host CPU side, we draw a quadrilateral for each
orientation of xi we wish to evaluate. A single quadrilateral
corresponds to a set of translations with a fixed orientation.
The resulting data from the GPU is shown in Fig. 1. Note that
the color-coding in the figure is a visualization aid: each pixel
output by the GPU is a scalar.

F. Computing Covariances

In many applications, the maximum likelihood estimate of
xi is sufficient. However, our methods allow a principled
estimation of uncertainty.

Once the value of the cost function has been evaluated over
a range of values of xi, a multivariate Gaussian distribution
can be fit to the data. Let x

(j)
i be the jth evaluation of xi:

K =
∑

j

x
(j)
i x

(j)T
i p(x(j)

i |xi−1, u, m, z)

u =
∑

j

x
(j)
i p(x(j)

i |xi−1, u, m, z)

s =
∑

j

p(x(j)
i |xi−1, u, m, z)

Σxi =
1
s
K − 1

s2
uuT (3)

Estimating the scan matcher’s uncertainty from computed
values of p(z|xi,m) takes into account both major sources of

Fig. 4. Posterior Accuracy. The mean posterior translational error (z axis) for three methods was computed on 200,000 iterations with initialization error of
up to 74 degrees (x axis) and 3 meters (y axis). Left: ICP, middle: Hill-Climbing, right: Correlation (our method). As the initial estimate of the rigid-body
transformation deteriorates, so does the quality of the output for both ICP and Hill-Climbing. In contrast, the posterior error of the proposed method is
independent of the initial error. The results for ICL were very similar to ICP and have been omitted.

ambiguity: the noise of the sensor itself, and the uncertainty
of which query points should associate to which parts of the
model. The shortcoming of this approach is that the resulting

Fig. 5. Sample Covariances. Left: position is well constrained in both x̂
and ŷ directions, yielding confident covariance estimate. Right: long hallway
provides only a few longitudinal constraints, yielding an elongated uncertainty
ellipse.

Gaussian is fit only to the samples that have been computed.
Any high-probability areas that are not within the sampled
volume will not be reflected in the Gaussian, resulting in an
over-confident estimate. Thus, it is important to evaluate the
probability p(z|xi,m) over large areas of xi— something our
approaches do well. See Fig. 5 for covariance estimates arising
from two cases.

IV. RESULTS

A. Experiment Design

A thorough empirical evaluation of a scan matcher requires
a great deal of ground-truthed data. At present, the only
reasonable way of obtaining this data is through simulation.
The traditional shortcomings of simulation (unrealistically un-
cluttered environments with minimal variety) can be avoided,
however, by simulating new data from a map generated from
real data. In this paper, we simulate lidar data from a map
built from the Intel Research Center data set (see Fig. 6). The
raw data is available from the Radish [20] data repository.
This map was constructed using a scan matcher employing
the methods in this paper in conjunction with a robust loop-
closing method [4].

In order to make the simulated observations more realistic
(and to account for the fact that not all parts of the building
were observed during the data collection), legal observation
positions were hand-annotated; these regions appear in blue.
Our experiments randomly selected a legal pose from the blue
area, then selected another pose nearby. This second pose must
satisfy two conditions: it must also be a legal pose (i.e., in

a blue area), and there must be a continuous line of blue
between the two scans. This, coupled with our use of 360-
degree scans, ensures that the two scans contain at least some
overlapping views. These precautions ensure that the simulated
scans include at least some overlapping features; if there are
no overlapping features, then no scan matching method could
be expected to compute a reasonable answer.

This sampling procedure produces realistic scans that ex-
hibit real-world clutter, noise, and occlusion effects due to the
robot’s different positions. We did not model the effects of
dynamic objects like pedestrians. Finally, the simulated laser

Fig. 6. Intel Research Center. A map derived from real data was used to
generate ground-truthed observations. Robot poses are constrained to be in
the blue area, which helps to ensure realistic scans.

scans were corrupted by Gaussian noise consistent with that
of an LMS-210 lidar.

B. Comparison Methods

In addition to the correlation-based methods described in
this paper, we have implemented variants of three popular
algorithms in order to provide a competitive comparison.
These methods are intended to be representative of algorithms
in use.

1) ICP: The Iterative Closest Point (ICP) algorithm used
here uses Euclidean distance for its distance metric with a 1.0
m matching limit. The variant here is symmetric: for each point
in both scans, we find the closest point from the other scan.
For example, suppose that ai is the point in a closest to bj , and

that bk is the point in b closest to ai. If bi is more than twice as
far from aj as bk, then the correspondence (ai, bi) is deleted.
This refinement helps recognize parts of the environment that
are visible from only one scan, and rejects the long-range
correspondences that might otherwise result. In the example
above, it is likely that bj has no corresponding reference
point. Our symmetric variant additionally creates additional
correspondences, helping to reduce error of the match. We
use Horn’s algorithm [6] to compute the optimal rigid-body
transformation given a set of correspondences.

2) ICL: The Iterative Closest Line (ICL) algorithm used
in our experiments associated query points with the closest
line segment using Euclidean distance. The line segments
are generated from consecutive pairs of points that are no
more than 1.0 m apart. Suppose that query point qi has been
associated with a line segment s: the point on s closest to qi

are associated and are passed to Horn’s algorithm in order to
compute a rigid-body transformation.

3) Hill-Climbing: The hill climbing method used here is
modelled after the Vasco scan matcher, which is distributed
with CARMEN. It is a local search method that repeatedly
attempts steps along the axial directions, accepting steps that
improve the match. The steps start off relatively large (1 m in
x and y and 10 degrees in θ); when no step yields a reduction
in error, the step sizes are reduced in half. When the step
sizes reach a pre-determined minimum (0.001 m for x and
y and 0.05 deg for θ), the search ends. Like our methods,
Vasco’s optimization is formulated in probabilistic terms and
uses a log-likelihood lookup table. In order to enable a direct
comparison to our correlation based methods, we use the same
rasterized lookup table.

Our primary experiment consisted of about 250,000 itera-
tions; for each iteration, we selected new poses, added noise
to the prior estimate, and ran each scan matcher. In Fig. 4,
the average translation error in the solution (z axis) is plotted
versus the prior’s translational noise (x axis) and rotational
noise (y axis). (The symmetry of the plots is due to prior
estimates having both positive and negative rotational errors.)

In general, errors of more than a few centimeters or a few
degrees are unacceptable: they cause error to accumulate in
the robot’s position estimate too quickly. Intuitively, we expect
higher levels of noise in the prior to be reflected in larger errors
in the solution. This is indeed the case for ICP, ICL, and Hill
Climbing. It is also noteworthy that the Hill Climbing method
had slightly higher error than ICP even when there was little
noise in the initialization.

The central result of this paper is this: the error of the
correlation based methods is both very low and robust to noise
in the prior. The price for this superior performance is greater
computational cost. However, as we will see in Section IV-C,
this cost is quite manageable.

The resolution of the lookup table influences the accuracy
of the results. We characterized the error of our methods
as a function of lookup table resolution over a range of
0.001m to 1m. We found no advantage to resolutions finer
than 1.5cm, with 3.1cm resolution being only slightly worse.

Error increases rapidly at resolutions coarser than 6cm. Based
on this data, we recommend resolutions of 3cm.

C. Performance

It should come as little surprise that the correlative methods
described here are typically slower than ICL, ICP, and Hill
Climbing. The primary motivation for the correlative methods
was an improvement in quality. However, the correlation based
methods are fast enough for real-time use (see Fig. 7). The
CPU used for the experiments was an Intel Core2 6600 at
2.4 GHz. While the CPU has multiple cores, our experiments
made use of only one thread. We evaluated two different
GPUs, spanning two generations of performance. The 7600
denotes an NVidia 7600GS running at 400 MHz, while the
GTX260 denotes an NVidia GTX260 (which has 192 stream
processors) at 650MHz. The grid resolution was 1/32 meter,
and for the correlative methods, the θ step size was set to one
degree.

The computational complexity of ICP and ICL, even with
our simple implementations, is quite good (see Figure 7).
Hill-Climbing is particularly fast. While their computational
complexity scales very well with increasing positional uncer-
tainty, their quality is completely unacceptable in these high
uncertainty regimes (see Fig. 4).

As expected, the computational complexity of the correl-
ative methods increases rapidly with increasing prior uncer-
tainty: the complexity scales with the volume of the un-
certainty. For relatively small uncertainties, such as those
that would be encountered in an incremental scan matching
context, several correlative algorithms are capable of real-time
performance. In these contexts, the search area decreases with
the update rate of the scanner: with fast updates, the robot
simply doesn’t have time to accumulate a significant amount
of positional error. At 75Hz, for example, a vehicle would have
to have a velocity error of 37 m/s (82 mph) in order to warrant
a 0.5 m search window. The size of the search window in θ is
equally generous: at 75Hz, the robot would have to spin at 240
rpm in order to warrant a 20 degree window. Yet, even at a
75Hz update rate, the multiple-resolution correlative algorithm
is fast enough (8.4 ms) to operate at real time.

For loop closing applications, real-time performance is less
critical: the ability to find correct correspondences becomes
the critical factor. A robot will only close a large loop on
a very intermittent basis (perhaps once every few minutes).
These loop closures are where large uncertainty windows
tend to appear. We see the performance of the correlative
methods (particularly the multiple-resolution implementation,
which can handle 4 m translational errors with 90 degree
rotational errors at over 10Hz) is entirely adequate for these
purposes.

Variability in runtime is also a challenge for real-time
systems. The runtime complexity of ICP, ICL, Hill-Climbing,
and the multiple-resolution correlative algorithm are data-
dependent. With ICP and ICL, it can take about 2.5 times
longer (see Fig. 8) to compute the answer for some scans as for
others. The single-resolution correlative methods are generally

Hill- Correlative Correlative Correlative Correlative Correlative
ICP ICL Climb (Naive) (2D Slices) (Multi-Res) (GPU 7600GS) (GPU GTX260)

0.5 m, 20 deg 56 ms 64 ms 1.1 ms 246 ms 27 ms 8.4 ms 98 ms 26 ms
2.0 m, 40 deg 99 ms 105 ms 1.3 ms 7512 ms 692 ms 20.8 ms 1563 ms 289 ms
4.0 m, 90 deg 145 ms 174 ms 1.0 ms 65282 ms 5029 ms 86.1 ms 13166 ms 2012 ms

Fig. 7. Runtime Results. The processing time to register two scans is given for three different search window sizes. The first window size is typical of an
incremental scan matching operation (used for correcting odometry, for example), while the third window represents a fairly large “loop-closing” problem.
For three different search windows, we collected timing estimates. Note that our implementation of ICP and ICL were simple implementations and could be
made to substantially faster by employing a quad-tree or similar data structure.

Hill- Correlative Correlative Correlative Correlative Correlative
(0.5 m, 20 deg) ICP ICL Climb (Naive) (2D Slices) (Multi-Res) (GPU 7600GS) (GPU GTX260)

mean time 56 ms 64 ms 1.1 ms 246 ms 27 ms 8.4 ms 98 ms 26 ms
10th percentile 34 ms 33 ms 1 ms 228 ms 24 ms 5 ms 94 ms 19 ms
50th percentile 55 ms 64 ms 1 ms 245 ms 26 ms 7 ms 97 ms 23 ms
90th percentile 84 ms 101 ms 1 ms 259 ms 29 ms 12 ms 103 ms 33 ms
P90/P10 ratio 2.47 2.65 1.0 1.13 1.21 2.40 1.10 1.74

Fig. 8. Runtime Variability. For real-time applications, runtime variability can be a significant design consideration. The ICP, ICL, Hill Climbing, and
Multi-Resolution algorithms exhibit significant runtime variability due to the data-dependence of their algorithms. The variability of the GPU (especially
GTX260) is somewhat surprising, and may be attributable to large overhead costs.

better, though the variability of the GTX260 GPU implemen-
tation was higher than expected. This variability only occurs
at the small search size: when performing larger searches, the
GPU methods become very consistent. We suspect that some
of this variability is due to the overhead of setting up the
operation.

V. CONCLUSIONS

This paper has presented a family of scan matching algo-
rithms based upon correlations. The approach is extremely ro-
bust to initialization noise, dramatically out-performing meth-
ods currently in use. We demonstrated that it is possible to use
these robust algorithms in real-time on both CPUs and GPUs.

Our method is probabilistically motivated, making it easy to
incorporate a probabilistic prior and to compute a covariance
estimate. Implementations of our routines are available at
http://april.eecs.umich.edu.

REFERENCES

[1] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

[2] S. Thrun, M. Diel, and D. ahnel, “Scan alignment and 3d surface
modeling with a helicopter platform,” 2003. [Online]. Available:
citeseer.ist.psu.edu/thrun03scan.html

[3] M. C. Bosse, “ATLAS: a framework for large scale automated mapping
and localization,” Ph.D. dissertation, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, February 2004.

[4] E. Olson, “Robust and efficient robotic mapping,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, June
2008.

[5] A. Censi, “An icp variant using a point-to-line metric,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
2008.

[6] B. K. P. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America. A, vol. 4, no. 4,
pp. 629–642, Apr 1987.

[7] F. Lu and E. Milios, “Robot pose estimation in unknown
environments by matching 2d range scans,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 1994, pp. 935–938. [Online]. Available:
citeseer.ist.psu.edu/lu94robot.html

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, 2nd ed. Cambridge, UK: Cambridge University Press,
1992.

[9] M. A. Fischer and R. C. Bolles, “A paradigm for model-fitting with
applications to image analysis and automated cartography,” 1981.

[10] I. J. Cox, “Blanche- An experiment in guidance and navigation of an au-
tonomous robot vehicle,” Robotics and Automation, IEEE Transactions
on, vol. 7, no. 2, pp. 193–204, 1991.

[11] A. Diosi and L. Kleeman, “Fast laser scan matching using polar
coordinates,” International Journal of Robotics Research, vol. 26, no. 10,
pp. 1125–1153, 2007.

[12] A. Censi, L. Iocchi, and G. Grisetti, “Scan matching in the hough
domain,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2005.

[13] T. Rfer, “Using histogram correlation to create consistent laser scan
maps,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2002, pp. 625–630.

[14] M. Bosse and J. Roberts, “Histogram matching and global initialization
for laser-only slam in large unstructured environments,” in ICRA, 2007,
pp. 4820–4826.

[15] K. Konolige and K. Chou, “Markov localization using correlation,” in
IJCAI ’99: Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 1154–1159.

[16] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time
robot motion planning using rasterizing computer graphics hardware,”
in In Proc. SIGGRAPH, 1990, pp. 327–335.

[17] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial Intelli-
gence in the New Millenium, G. Lakemeyer and B. Nebel, Eds. Morgan
Kaufmann, 2002, to appear.

[18] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). San Francisco, CA: IEEE, 2000.

[19] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The Carnegie Mellon navigation
(CARMEN) toolkit,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, Las Vegas,
NV, October 2003, pp. 2436–2441.

[20] A. Howard and N. Roy, “The robotics data set repository (radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

