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Abstract— When calibrating a camera, the radial component
of lens distortion is the dominant source of image distortion. To
model this lens distortion, camera models incorporate a radial
distortion model that conforms to a certain parametric form.
In practice however, multiple parametric forms can be used to
model distortion for a given lens. Ideally, one would choose the
best suited parametric form using a model selection procedure.

In this work, we propose the use of Gaussian Process
regression to model lens distortion. With the use of a squared
exponential covariance function, a Gaussian Process (GP) can
describe the space of smooth distortion functions; kernel hyper-
parameter selection in this space then analogous to performing
explicit model selection between possible parametric models.

Our evaluation shows that this Gaussian Process formulation
of lens distortion performs on par with parametric distortion
models.

I. INTRODUCTION

A camera calibration procedure obtains a camera model

that can be used to extract metric information such as object

size or depth from 2D images. This procedure optimizes a

parametric camera model to best explain a set of observed

correspondences between world and image points.

For applications in computer vision and photogrammetry,

it is common to assume a projective pinhole camera model.

This simple pinhole model, however, does not account for

the distortion caused by the camera lens. Therefore, camera

models are augmented with a radial lens distortion model

to compensate for lens effects. The calibration procedure

for the augmented camera is then modified to estimate the

parameters of the lens distortion, along with the other camera

parameters.

Usually, the lens distortion is assumed to be well modeled

by a parametric family of functions. Examples of parametric

distortion models include polynomial, field-of-view, rational

function and division models [1]. The particular choice of

parametric family used is based on the type of lens being

modeled. In reality, lenses may not conform to any of

the proposed parametric distortion models. Manufacturing

errors and tolerances can cause additional deviations from

the intended distortion. In this situation, a rigorous approach

for choosing the best parametric model is to perform model

selection on multiple calibrated lens distortion models [2].

Also, traditional optimization based calibration approaches

are designed to produce maximum likelihood estimates of

the model parameters. However, these point estimates fail

to capture the uncertainty in the model parameters, which

arise because of inherent noise in input data: correspondences
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Fig. 1. A Gaussian process lens distortion model. In our work, we propose
a technique for using a Gaussian process to learn a lens distortion model.
Using the learn lens distortion model, distorted images from a camera can
then be undistorted as shown.

between world and image points can be affected by pixel

quantization, image feature localization accuracy and toler-

ances when printing the calibration target.

Prior research such as [3], [4], [5] investigate the prop-

agation of input uncertainty through the calibrated camera

model. However they only model the uncertainty of the

pinhole camera parameters: much like the pinhole camera

parameters, there is uncertainty in an estimate of the distor-

tion function too.

In order to model this distortion function uncertainty, one

would expect to capture a distribution over possible distor-

tion functions. However, using a parametric model of the lens

distortion makes this challenging since simple distributions

over the distortion parameters can lead to complex and even

unlikely distributions over distortion functions.

Using a GP to model lens distortion provides an elegant

alternative to the problem of model selection. With a squared

exponential kernel, a GP can model the space of smooth

non-linear functions. Now, kernel hyper-parameter selection

in this space of smooth functions is analogous to the process

of explicit model comparison/selection between multiple

parametric models.

Also, a simple GP prior over a function results in a simple

GP posterior over that function. In other words a GP posterior

can capture a distribution over possible smooth distortion

functions. Thus a GP provides an elegant way of modeling

the uncertainty in the distortion function estimates.

Traditionally, the camera calibration problem is formulated

as a non-linear least-squares model fitting problem. This for-



mulation can alternatively be viewed as maximum likelihood

inference in a factor graph with Gaussian factor potentials

(see [6]). Incorporating a parametric distortion model is

achieved in a straight-forward manner (see section IV). Since

GP models are a non-parametric regression technique, they

have no explicit parameters and it is not immediately obvious

as to how one can incorporate a GP into a framework that

optimizes parametric models.

In this work, we present a method for incorporating a

GP model into this factor graph inference framework. The

GP distortion model is then learned in a joint optimization

with other parameters. This method adds great flexibility to

the factor graph optimization formulation, while preserving

much of its computational efficiency.

Finally, we propose a rigorous evaluation strategy that

evaluates the performance of camera models on a set of

test images. The use of separate training and testing datasets

might seem obvious to readers with a machine learning back-

ground. Nonetheless, this has not been a standard practice in

camera modeling tasks1.

In summary, the important contributions of our work are:

• We present a camera model that uses a GP to model

lens distortion. We also show how a GP model can be

incorporated into a factor graph inference framework

optimized for Gaussian factor potentials.

• We propose a rigorous evaluation strategy that evaluates

the performance of camera models on a set of test

images.

• We show that our GP distortion model achieves accu-

racy comparable to the best parametric model.

• The proposed GP lens distortion model provides a basis

for modeling the uncertainty in the estimate of the lens

distortion.

In the following section we review prior work in this

area. In the next section we give a brief summary of the

background necessary to understand our work. Following

that, in section IV, we describe how we model lens distortion

using a GP and optimize the parameters of the GP. In

section V we evaluate our method. Finally, we conclude this

paper with a discussion on future work.

II. PREVIOUS WORK

Camera calibration techniques generally fall into two

broad categories: photogrammetric calibration and self-

calibration. Photogrammetric calibration uses a calibration

target with a precisely known 3-D structure [8]. Alternatively,

a planar target undergoing controlled motion can be used

instead of a 3-D calibration target [9].

In contrast, self-calibration methods use multiple views

of the same scene and exploit the rigidity of the scene

to calibrate the camera parameters [10]. Photogrammetric

and self-calibration methods use the same lens distortion

models; only the calibration procedures are different. In this

work however, we choose to implement photogrammetric

1However, literature in the related field of optics and optical modeling
report testing errors when evaluating models (see [7]).

calibration, since it is the more mature technique. A classic

reference for the reader interested in the history of camera

calibration methods is the work by Clarke and Fryer [11].

Zhang [12] was the first to present a technique that

used multiple views of a single planar calibration target to

calibrate a camera. This technique is very popular because

it requires only a planar calibration target that is easily

manufactured. Because of its simplicity, many open-source

calibration toolkits [13] are based on this technique.

Calibrating a lens distortion model in a photogrammetric

or self-calibration setting falls under the technique of metric

lens calibration. Alternatively, one can exploit the fact that

straight lines in the scene must project to straight lines, in

order to correct lens distortion in a non-metric fashion [14],

[15]. In our work, we use metric lens calibration, since it is

the natural choice for photogrammetric calibration methods.

Other non-parametric models have been proposed in the

literature. Hartley and Kang [16] use a locally averaged

estimate of observed distortion to build a non-parametric

distortion model. Ricolfe-Viala and Sanchez-Salmeron [15]

explore the use of model-free distortion estimation in a

non-metric lens calibration setting. Our work differs from

these approaches in that we use a GP as the non-parametric

distortion model. This gives our method the advantage that

the smoothness of the resulting distortion function is well

determined. It also gives our model the ability to capture the

uncertainty in the distortion function estimate.

III. BACKGROUND

A. Gaussian Process Regression

The use of Gaussian processes for regression is an exten-

sive topic; we present a practical definition of the technique

here and refer the reader to [17] for a thorough mathematical

treatment.

GP regression can be understood as predicting new out-

puts using a locally weighted sum of the observed targets,

where the local weighting is specified indirectly through a

covariance function [18].

For GP regression on a set of observations t at a set of

input locations x, we assume that the data was obtained from

a GP with covariance function k(xn, xm). Let β denote the

precision (inverse variance) of input noise of the observed

target values t. We then define C as the covariance matrix

with elements C(xn, xm) = k(xn, xm). When we require

a prediction for a new input xN+1, we first construct the

covariance matrix CN+1 and partition it as follows:

CN+1 =

[
CN k

kT c

]

Then the mean and variance of the predicted value at a new

location xN+1 are given by

m(xN+1) = kTC−1
N t (1)

σ2(xN+1) = c− kTC−1
N k (2)



A popular choice for the covariance function is the squared

exponential (SE) kernel

k(xm, xn) = θ21 exp

{

−0.5
(xm − xn)

2

θ20

}

+ β−1δij

This covariance function captures the correlation between the

outputs at different locations of the GP. Informally, one can

think of the covariance function as controlling the smooth-

ness of the resulting regression curve. The SE covariance

function estimates infinitely differentiable curves and hence

produces regression curves that are “very smooth”. It is

reasonable to assume that distortion functions are smooth,

infinitely differentiable functions and hence we use the SE

covariance function in our formulation.

For effective regression, one has to determine appropriate

kernel hyper-parameters θ0, θ1, β. A standard technique to

find optimal values of the hyper-parameters, is to optimize

the marginal likelihood of observed data given the hyper-

parameters. In this work however, we use cross-validation on

data folds to find appropriate values of the hyper-parameters,

as explained in Section IV.

B. Camera Calibration

In this section, we present a basic overview of Zhang’s

calibration method [12] and show how camera calibration

can be formulated as a non-linear least-squares problem.

1) Homography estimation: For purposes of calibration,

a camera is modeled as a projective pinhole camera. In this

model, an object viewed through a camera undergoes a rigid-

body transformation followed by a perspective projection as

defined by the following equation:
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The point (cu, cv), called the principal point or optical

center is the center of the coordinate space defined on the

image plane. The homogeneous 3D point x = [x y z 1]T

is a point in the world coordinate frame. It is projected

into a homogeneous 2D image coordinate space by first

transforming it by a rigid-body transform E = [R t] and

then projecting it into image coordinate space via the cam-

era matrix K containing the parameters fu, fv, cu, cv . The

parameters fu, fv represent the focal length of the pinhole

model in the u and v directions. This projection gives us

the homogeneous 2D point y = [ u
w

v
w

1]T . The matrix K

contains the camera intrinsic parameters and E is the matrix

of camera extrinsic parameters.

The combined transformation H = K × E defines a

linear map from world coordinates to image coordinates,

called a homography. The camera calibration problem is then

mathematically equivalent to estimating a homography from

a set of world-image correspondences. This estimation is

done using the Direct Linear Transform (DLT) method [19].

In order to obtain a closed form solution, the DLT method

estimates an H that aligns the directions of the world

and image point vectors. Mathematically, this translates to

minimizing the following sum of errors:

e =
∑

i

yi × Hxi (3)

There are two things to note about the DLT. First, one would

expect to minimize the geometric reprojection error

e∗ =
∑

i

(yi − Hxi)
2 (4)

Instead, it optimizes an algebraic error (3), that is only related

to this geometric error. Second, given an estimate of the

camera matrix K, it is possible to recover the extrinsics E

from the estimated homography H. Details of this procedure

can be found in [12].

C. Parametric radial distortion

The camera model described previously ignores the dis-

tortion caused by the lens while estimating the homography.

Also, it minimizes an algebraic error instead of the geometric

re-projection error. Hence, the camera model is refined by

performing iterative non-linear minimization on an error

function that includes a lens distortion model.

The conventional parametric approach is to augment the

camera model with a radial distortion function d(·) to

take into account the lens distortion. First, we define r as
√

‖Hxi − cuv‖, where cuv = [cu cv]
T , and then define d as

a function of this radius r. A parametric form is assumed

for the function d. The mathematical form of the augmented

camera model is now

yi = f(Hxi)

The iterative non-linear optimization procedure then seeks

to fit the model parameters (intrinsics, extrinsics and distor-

tion) by minimizing the following error function

e =
∑

i

(yi − f(Hxi))
2 (5)

This is a non-linear least squares estimation problem. The

optimization procedure works by linearizing the error func-

tion at the current estimate of the variables, and then solving

the resulting linear least squares problem to obtain an up-

dated estimate. This procedure is iterated until convergence.

Estimates from the DLT algorithm are used to initialize this

optimization procedure.

IV. METHOD AND IMPLEMENTATION

Zhang’s camera calibration method [12] operates by ex-

tracting world-image point correspondences from n different

images of the calibration target. It then sets up a non-linear

optimization to infer the values of the camera intrinsics, lens

distortion parameters, and n different calibration extrinsics

that best explain the observed world-image correspondences.

It is interesting to note the sparse variable dependence

structure of this problem: each image point yi is dependent

only on the corresponding input world point xi, the extrinsics



(a) Expanded factor graph (b) Plate notation

Fig. 2. Factor graph interpretation of the camera calibration problem.
Four sets of world-image correspondences M1···4 have been observed from
four different views E1···4 of the calibration target. A factor node connects
each Ej ,Mj pair with the camera intrinsics K and distortion parameters
d, because each set of observed correspondences Mj are affected only by
the nodes it is connected to (refer text for details). On the right is the plate
notation representation of this factor graph.

of that particular calibration target pose Ej , camera intrinsics

K and distortion function parameters d. This structure is cap-

tured graphically when the optimization problem is expressed

in terms of inference in a factor graph, as shown in Fig. 2.

This relation between non-linear least-squares optimization

and inference in a factor graph has been previously studied

in the SLAM community (see [6]).

Consider the factor graph in Fig. 2. A factor node connects

nodes K,D,Ej and the correspondences for that target pose

Mj . The factor potential for this factor node is the non-linear

geometric reprojection error (refer eq. 5):

q(K,Ej ,d) =
∑

m

{yim − f(KEj xim)}2 , (6)

where the sum is over the m correspondences obtained for

calibration target pose j. Inference on the factor graph then

tries to obtain values for K,Ej and d that minimize each of

the factor potentials. This factor graph can be represented

compactly using plate notation as shown in Fig. 2(b).

The node d in the factor graph contains the parameters of

the distortion model. An important contribution of our work

is to show how a GP model can be incorporated into this

factor graph based inference framework, by replacing d with

a node that can model a GP.

A. Gaussian process factors in a factor graph framework

To explain incorporation of GP models in a factor graph

inference framework, we begin from a basic property of a

GP: by definition, a finite set of samples g from a GP with

zero mean prior and covariance function k(xm, xn) has a

multi-variate Gaussian distribution: g ∼ N (0,C), where the

entries of the covariance matrix C are given by the covariance

function k(xm, xn).
A GP is an infinite-dimensional entity and we cannot

model it directly. However, a finite subset of its samples has

a Gaussian distribution with a specified covariance structure.

Thus, we can indirectly model a GP using a finite subset of its

samples. In a factor graph setting, we express this by creating

a node containing GP samples. The factor node connected

Fig. 3. Camera calibration factor graph with a GP lens distortion model.
This factor graph has the same structure as the one in Fig. 2. However
we replace the parametric distortion node d with a node g that contains
distortion function samples. The factor node connected to g then uses a
distortion function estimated from these function samples..

(a) Control knobs (b) Control knob positions induce functions

Fig. 4. Control knob analogy for GP models. The set of function samples in
a GP factor node act as control knobs that induce a function based on their
position. Inference on the GP node can then be visualized as positioning
these knobs in order to induce the required function. This is analogous to the
use of control points for manipulating Bezier and spline curves in graphic
modeling software.

to these GP samples then uses the prediction equations (1)

and (2) to interpolate the values of the distortion function

for other pixel locations.

In other words, we try to infer the distortion function

values at a set of pre-specified pixel radii. Intuitively, these

distortion function values induce a mean function that is

used to predict the values of distortion for new input pixel

radii. One way of visualizing this technique is to see these

distortion function values as “control-knobs” that control a

smooth curve (see Fig. 4). Thus, in the case of a GP distortion

model, the factor graph inference procedure infers a function

indirectly, by inferring the position of these control-knobs

(distortion function values).

The implementation of the factor node in the case of the

factor graph in Fig. 3, uses a factor potential that is similar

to (6). The only difference is the way in which the function

f is evaluated: the mean prediction function (1), operating

on the targets g is used to evaluate f(·).

B. Gaussian process hyper-parameter optimization

In a fully Bayesian setting, a rigorous way of optimizing

hyper-parameters is to optimize the marginal likelihood

of the data given the hyper-parameters [17]. In our case,

however, we only perform maximum-likelihood inference

of the model parameters. Hence we are unable to apply

Bayesian estimation techniques directly. Instead, we use

cross-validation on a held-out validation set to find good GP

hyper-parameter settings.

C. Implementation

We use the April Robotics Toolkit [20] to implement

our camera calibration software. This toolkit provides a

framework that allows us to express the calibration problem

in terms of its underlying factor graph. We then solve the



resulting optimization problem using a Levenberg-Marquadti

solver.

When integrating a GP model into the factor graph, one

has to fix the number of function samples inferred within the

GP node. A large number of samples makes the optimization

process computationally expensive. However, a relatively

small number of samples should suffice since the distortion

function being modeled is smooth. In our implementation,

we perform inference on 25 equally spaced function values.

For the calibration procedure, we used a training set of

14 images. An average of 40 world image correspondences

were extracted from each image. In order to find hyper-

parameter settings, we chose to further divide the training

set into a development set consisting of 11 images and

a validation set of 3 images. By random shuffling, 30

different development/validation partitions were created from

the same training set.

We perform a grid search over the space of hyper-

parameter settings and evaluate the validation error of each

hyper-parameter setting on the 30 different training set

partitions. We then choose the hyper-parameter settings that

gave the lowest validation error as the best estimate of the

hyper-parameters.

We evaluate prediction error on a testing/validation image

by undistorting a test image of the calibration target using

the lens distortion model that was estimated. World-image

point correspondences are then obtained from this undis-

torted image. Then, an initial estimate of the calibration

target extrinsics is obtained using the DLT method. This

estimate is then refined using a non-linear optimization of the

reprojection error, with the camera model and lens distortion

held constant. The reprojection error after the non-linear

optimization has converged is reported as the prediction error.

V. EXPERIMENTS

We evaluated the performance of our method on two wide

field-of-view camera lenses: a Tamron lens with 2.2 mm fo-

cal length and another Tamron lens with 2.8 mm focal length.

The 2.2 mm focal length lens produced more distortion that

the 2.8 mm focal length lens. As mentioned previously, we

report test errors as a rigorous assessment of model predictive

performance.

For both the lenses, we use an independent calibration

sequence of 10 images as the test set. We present the results

of this evaluation in Fig. 5. From our plots, we conclude

that the GP distortion model is capable of capturing a

suitable distortion function. Also, the performance of the GP

distortion model is comparable to the performance of the best

polynomial lens-distortion models.

The lens distortion model estimated for the lenses are

shown in Fig. 6. The estimated models suggests a barrel

type distortion for both the lenses. Visual inspection of the

acquired camera images confirms the presence of predomi-

nant barrel distortion, and thus confirms the validity of the

estimated model.

By convention, the number of training images used for

calibration is six. This is due to a result presented in Zhang’s
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Fig. 6. Estimated distortion functions. This plots shows a pixel radius vs
pixel distortion plot of the estimated GP distortion model. The estimated
model has a large negative direction, suggesting a predominant barrel
distortion.
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Fig. 7. Variation in test error as a function of training set size. This plot
shows that the that variation in test error reduces with increasing training
set size. However, the test error stabilizes around a training set size of 12.
Hence, for our experiments, we choose a training (development when using
validation) set size of 11 images.

original paper [12], which shows that the training error does

not improve much with the use of more than 6 target images.

We perform a similar study for our method and present our

results in Fig. 7. Once again, we report improvement in

testing error instead of training error since it is a rigorous

way of evaluating model predictive performance. The results

show that the improvement in testing error variance for

training sets with more than 10 images is minimal. Based

on this experiment, we choose a development set size of 11

images for this work.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed the use of a Gaussian Process

model for lens distortion. A GP model of lens distortion pro-

vides an alternative approach for performing explicit model

selection amongst multiple parametric models. Because a

GP can represent a distribution over functions, it is also

suitable for capturing the uncertainty in an estimate of the

lens distortion.

We implemented our calibration procedure, by expressing

it as a factor graph inference problem and then using a factor

graph inference framework to perform maximum likelihood

inference. A core contribution of our work is a technique for

incorporating Gaussian Process nodes into this factor graph

inference framework.

Finally, we presented results confirming the suitability

of using this Gaussian process lens distortion model for

modeling the distortion of two real world lenses. Our results

also confirmed that the GP distortion model performed on

par with polynomial lens distortion models.
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Fig. 5. Performance comparison of distortion models for two Tamron lenses. Here, we plot the test (pixel reprojection) errors obtained when using the
GP model (red bar) and polynomial models of orders 3,4,· · · 8 (blue segments). We observe that the GP model performs on par with the best polynomial
distortion models.

(a) Tamron 2.2 mm distorted (b) Tamron 2.2 mm rectified

(c) Tamron 2.8 mm distorted (d) Tamron 2.8 mm rectified

Fig. 8. Rectified images. The estimated distorted models are used to rectify
the image. The lenses have a predominant barrel type distortion (straight-
lines tend to bend inwards with increasing distance from the center). The
2.2 mm focal length lens has a wider field-of-view and hence produces more
distortion than the 2.8 mm lens.

In our current implementation, the GP model optimization

is an order of magnitude slower than the polynomial model

optimization, because of the multiple validation runs used to

determine the optimal hyper-parameter settings. As future

work, we intend to pursue more efficient gradient based

hyper-parameter optimization strategies.
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