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Abstract— We present a hybrid path planner that com-
bines two common methods for robotic planning: a Dijk-
stra graph search for the minimum distance path through
the configuration space and an optimization scheme to iter-
atively improve grid-based paths. Our formulation is novel
because we first commit to the minimum distance path,
then explicitly relax the path to maximize the clearance up
to a user-specified bound. Notably, this formulation yields
more predictable paths than potential field methods which
try to trade increases in path length for greater clearance
around obstacles. These potential field costs infer a trade
off that can yield poor paths when the obstacle map is
partially observable and has a finite history.

Some approximations are used to ensure efficient plan-
ning, but only a small set of additional behaviors were
required to ensure safe operation. Our method has been
field tested extensively, as it is the main on-robot path
planner for our large team of 14 medium-scale autonomous
ground robots and entry to the 2010 Multi Autonomous
Ground-robotic International Challenge, MAGIC 2010.

I. INTRODUCTION

Our research focuses on large-environment mapping
with a team of many autonomous ground robots and
a limited amount of remote human guidance. These
robots must be capable of robustly traversing indoor and
outdoor urban environments. These are environments
with no guarantee of a safe solution, incomplete and
noisy obstacle maps, and imperfect localization. These
issues confound planning and motivate a system which
is predictable and explicitly maximizes path safety when
planning in near-collision environments.

The classical problem formulation in path planning
is a search for the minimum cost path in a graph.
Dijkstra’s shortest path algorithm and A∗ (an extension
of Dijkstra’s algorithm with admissible heuristics) are
reasonable solutions to this generic formulation [4], [9].
When generating topological plans, e.g. urban driving
directions, this formulation is straightforward and works
well. However, ground robot path planning must safely
handle unknown, cluttered, and dynamic environments.
Besides minimizing path length (a proxy for travel time),
the path planner must account for imperfect vehicle
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Fig. 1: Example path computed via the proposed
method. The configuration space is shown in red, the
minimum-distance path from Dijkstra’s algorithm in
orange, the optimized path in blue, and the distance
from the nearest obstacle represented in gray scale. The
robot is also drawn in blue. Note that at marker A,
the path does not meet the safety margin criteria and
is spaced equidistant from both obstacles, while at B
the safety margin is met and the path need not extend
to be equidistant from obstacles on both sides.

localization and satisfy vehicle kinematic constraints
(such as a non-holonomic constraint for vehicles with
limited steering angles) or smooth driving needs.

Two major path planning approaches are roadmap
and cost-based formulations. Roadmap methods on the
Voronoi diagram guarantee maximum clearance, which
provides maximal robustness to localization errors [15],
[8], [1]. The standard Voronoi diagram, however, gener-
ates maximum-clearance paths even in arbitrarily large
environments. Some prior works address this by adding
in boundaries retracted from obstacles [1]. Other meth-
ods, such as Rapidly-exploring Random Trees (RRTs),
do not consider clearance and instead randomly generate
roadmaps to create paths which satisfy difficult kine-
matic or dynamic requirements [12]. In contrast, cost-
based formulations define a continuous-valued field in
which the costs generated around obstacles are deter-
mined by artificial-potential functions [10]. However,



potential functions can be problematic in varying-size
environments because the basic formulation encodes
an aversion for small workspaces (a globally-constant
function maps distance to cost). Due to this, Dolgov et
al. define the Voronoi Field, a potential field scaled by
the local workspace size via the Voronoi diagram [5].

Within cost-based formulations, analytic and discrete
grid methods are both popular. Analytic methods such
as Wein et al. compute closed-form functions for the
optimal path given the nearest obstacle, such as a line
obstacle [15]. In contrast, grid-based methods represent
obstacles and decaying costs with uniformly-spaced
discrete samples and use algorithm’s such as A∗ to
compute paths [3], [14], [11], [7] . Grid methods also
integrate conveniently with terrain classifiers which rep-
resent obstacles of arbitrary shapes via a discrete binary
obstacle map. These methods are also easy to augment
with virtual obstacles from other classifiers. Some grid
methods, such as D∗ and D∗ Lite, even support efficient
replanning when only a portion of the obstacle map
changes [14], [11].

Unlike analytical methods, grid methods generally do
not create smooth paths. Some methods overcome this
issue with line-of-sight checks that remove unnecessary
nodes diverging from from the true shortest any-angle
path. One example is Theta∗, which removes nodes
during the search on the grid [3]. This closely approxi-
mates the any-angle, minimum cost path visibility graph
without the high computation time. Of course, the paths
will contain some sharp angles, but often fewer than
worst-case discrete approximations of diagonal paths. If
explicit smoothing is required, the method of Dolgov et
al. achieves this through conjugate gradient path smooth-
ing [5]. For efficiency reasons, however, collision-free
smoothed paths are not guaranteed without additional
analysis after smoothing.

Another strategy for smooth driving is pure pur-
suit [2]. In pure pursuit, smoothing is achieved in the
controller by computing, at every time step, parameters
which intersect the vehicle with a look-ahead point
down the path. Increasing the look-ahead distance de-
creases the strictness of the controller and increases the
smoothing. This technique results in a smoothed path,
but it does not guarantee a collision-free trajectory. Also
varying the look-ahead distance as a function of clear-
ance may be sufficient to avoid collisions but does not
solve the smoothness problem in narrow environments.
Ferguson et al. share this conclusion in their work on
Field D∗, an interpolation-based planning and replanning
algorithm [7].

For many methods, however, an additional problem

is caused by the partial-observability of the world state.
Even when we retain the last N 3D scans before gener-
ating obstacle maps, N must be small to avoid blurring
and alignment error. This is problematic for cost-based
methods, as an explicit trade off between clearance and
distance is defined by the potential function. With a
partially-observable world state, there are unobserved
states in the map which may deserve a higher cost value
than free space. Balancing this cost with the potential
functions poses a difficult parameter tuning problem.
When tuned poorly, the result is that high costs in the
potential field can divert plans through phantom obsta-
cles1 and cause planning oscillations when compared to
the minimum distance path.

Our approach is a grid-based planning method using
Dijkstra’s algorithm. We incorporate obstacle clearance
with a cost formulation on a discrete grid, as our terrain
classifier outputs discrete, binary-labeled obstacle maps.
In addition, we smooth the resulting path from the graph-
search to remove high-frequency jitter and ensure that
we output a smooth trajectory with meaningful heading
references.

We generate plans in a single, 2D configuration
space. While our vehicle is not holonomic, its skid-steer
drivetrain allows it to turn in place, which we refer
to as quasi-holonomic. Since the vehicle can turn in
place and has a roughly equal aspect ratio, convolution
with a single 2D circular kernel efficiently precomputes
all collision tests for the vehicle. Our method avoids
difficult parameter tuning through a simple heuristic: we
first commit to the minimum distance path computed on
a binary cost map, then optimize this path to achieve the
clearance and smoothness we need.

The contributions of our method are a well tested path
planning algorithm for small, quasi-holonomic vehicles
that:

1) minimizes path cost in two phases
2) does not require tedious parameter tuning to avoid

phantom obstacles and incorporate clearance
3) is largely immune to discrete space planning arti-

facts
4) ensures that smoothed paths are smoothed with

respect to the obstacle map
5) is sufficiently fast for real-time use

We describe the method in Section II. In Sections
III and IV, we discuss initial plan computation and
subsequent optimization routines. In Section V, we
provide experimental results using our dataset from the
MAGIC 2010 robotics competition.

1obstacles which exist but are no longer observed
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II. METHOD

A. Overview

Planning for our robots is split into two problems:
1) global waypoint planning and 2) local motion plan-
ning. Global waypoint planning is carried out on a
remote Ground Control Station (GCS) after the maxi-
mum likelihood global map is computed by collectively
aligning sub-maps from the robots. As such, global
planning is not done on the robot. Instead, the GCS
computes coarse global plans and sends a small number
of local waypoints (1 to 3) to the robot. In this way,
the on-robot planning is indifferent to the larger, multi-
robot plan, including the iteratively optimized global
coordinate system. On-robot planning is only defined
in the local sensor range with limited history.

Motion planning for the robot follows a simple 2D
planning scheme based on a discrete cost map. Each
discrete cost map is generated from the LIDAR data
where the most recent N 3D scans are projected into the
XY ground plane and collectively aligned using laser
scan-matching.

In this representation, the world is divided into a
regular grid of cells in which each cell is labeled as free
or infinite cost, the latter of which denotes collisions.
Some of our methods could be easily extended for
intermediate cost values.

Collision tests are efficiently handled by generating
a configuration space through 2D max disc convolution
[13]. This encompasses all θ values for a given position
and reduces the 3D planning problem to a 2D problem.
Further, this reduces the number of points to sample at
a given position – only one point must be sampled if
the robot is fully covered by a single kernel.

Plan formulation is split into two main steps. First,
the minimum distance path is computed by a state
space search using Dijkstra’s algorithm. Second, this
initial path is iteratively optimized to maximize clear-
ance between obstacles when in narrow passageways
and smooth the discrete-space path in the continuous
domain. This two-stage method was eventually chosen
to prevent plans from traversing phantom openings hal-
lucinated due to finite sensing history, which can cause
planning oscillations.

III. INITIAL PATH: MINIMUM DISTANCE PLAN

A. Configuration Space

As discussed in Section II, collision checking is
achieved by pre-computing a configuration space using
a circular representation of the robot. The result is
a planning space in which collision tests have been
precomputed for every state in the state space. Given this

(a) Obstacle map (b) Configuration space

(c) Minimum distance path (d) Smoothed result

Fig. 2: Obstacle map and configuration space used for
computing the minimum distance path to the goal. The
configuration space (b) is computed by 2D max disc
convolution with the obstacle map (a). (c) shows the
path resulting from Dijkstra’s algorithm in orange with
the cost of each node examined in gray. Nodes with
costs greater than the solution not examined and shown
in yellow. Finally, the distance transform (gray) and
smoothed path (blue) are shown in (d)

representation, the path planning problem is reduced to
a search for a sequence of adjacent states connecting the
current robot position to the desired goal. An example
input obstacle map is shown in Figure 2a with the
corresponding configuration space shown in Figure 2b.

B. Dijkstra’s Algorithm

With the configuration space computed, finding the
minimum distance path is a simple state space search
using Dijkstra’s algorithm, sometimes referred to as
Wavefront [4]. The algorithm is simple: we initialize the
cost of all states to the maximum value and set the goal
to zero, adding the goal to a heap. Then we loop, pulling
a node from the heap, computing the cost to reach all
of its adjacent states in the graph2, and if that state has
not been checked, set its value to the new value and put
that state in the heap. This is continued until either the
heap is empty or we reach the pose of the robot, thus
completing the search. Dijkstra’s algorithm has a few
nice properties including completeness and optimality,
subject to the discretization of the underlying graph.
Figure 2c shows the costs computed for the Dijkstra
search rendered in grayscale.

2We use an 8-connected graph, which has edges at evenly-spaced
45◦ increments.
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Once the costs are computed, the minimum distance
path can be computed quickly via gradient descent over
the resulting surface, starting at the robot pose and
concluding upon reaching the goal.

IV. PATH OPTIMIZATION

With a 5 cm grid and 45◦ angular increments for
planning, the resulting minimum distance path will
be coarse. An intuitive but problematic solution is to
effectively filter the path by tuning the path controller
to follow the path loosely, as discussed in Section I.
However, the internal state in the path planner provides
useful information for making informed decisions about
where to relax the path. Because the 8-connected grid
is too coarse to produce a smooth path and a finer grid
would increase computational cost, we instead iteratively
smooth the path in the continuous domain. The criteria
we maximize are a) clearance (up to a set bound), and
b) path smoothness

Each smoothing step requires the calculation of the
distance to the nearest obstacle. We precompute this with
a distance transform, then iteratively smooth the path for
a fixed number of iterations. Additionally, we intend to
maximize the distance from the nearest obstacle at all
points on the path, up to some maximum clearance.

We are interested in optimizing the following cost
function. Let

N∑
i=1

δl(i)∆li (1)

define the cost computed as a discrete line integral along
the path, where δl(x) denotes the sample cost for the
point x on the path. We will optimize this function in a
decoupled fashion: for each point, minimize the sample
cost first, then minimize the local line integral.

This process is implemented as an iterative path
optimization, repeating the following three steps for a
fixed number of iterations:

1) Resampling Ensure minimum and maximum sam-
pling density of the path.

2) Relaxation Relax the path by moving points indi-
vidually down the cost surface to increase clear-
ance, up to a set bound.

3) Smoothing Smooth and tighten the path around the
cost surface.

A. Distance Transform

We consider the common case where the cost at a
point is defined as a function of the distance to the
nearest obstacle. This distance transformation is used
for relaxation, smoothing, and later to provide clearance
information to the path controller for dynamic velocity

Algorithm 1 Path relaxation
1: for i ∈ [1, path.length− 1) do
2: A = path.get(i− 1)
3: B = path.get(i)
4: C = path.get(i+ 1)
5: best = B
6: for B′ ∈ SamplesPerpindicularTo(A,C) do
7: if cost(B′) < cost(best) then
8: best = B′

9: end if
10: end for
11: path.set(i, best)
12: end for

adjustments. It is computed on the binary configuration
space using a method from Felzenszwalb and Hut-
tenlocher and retained only for distances within the
clearance bound [6]. An example result is shown in
Figure 2d.

B. Path Relaxation to Maximize Safety Margins

Path relaxation is achieved by proposing sideways
movements of each point i on the path with respect to
the line segment formed by the points i − 1 and i + 1.
For each point in each iteration, the sample with the
minimum cost is taken, even if it would increase the
total integral path cost in Equation 1. This relaxation
step allows the path descend the cost surface, either
settling into local minima or stopping once the safety
margin has been achieved, and does so by choosing the
sideways movement for the point i that minimizes the
expression

δl(i) (2)

independently for each point.
The relaxation algorithm is detailed in Algorithm 1.

C. Path Smoothing

Like path relaxation, path smoothing is achieved by
proposing sideways moves for each point i in the path.
The difference, however, is that the proposed moves
must bring point i closer to the line segment defined by
the adjacent points i− 1 and i+ 1 as well as reduce the
total cost of the sub-path {i− 1, i, i+ 1}. Specifically,
we replace the point i with the projection of i onto the
line segment {i − 1, i + 1} if the following expression
decreases after projection

δl(i− 1)∆li−1 + δl(i)∆li (3)

where ∆lj is the Euclidean distance from point j to
j + 1. This is the local line integral for the triplet.

Computing the total sub-path cost, evaluated as a line
integral above, allows us to shorten and thus smooth
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the path even in uniform-cost regions. This process is
outlined in Algorithm 2. Figure 2d shows the relaxed
and smoothed path in blue.

Algorithm 2 Path smoothing
1: for i ∈ [1, path.length− 1) do
2: A = path.get(i− 1)
3: B = path.get(i)
4: C = path.get(i+ 1)
5: seg = LineSegment(A,C)
6: B′ = ProjectionOntoSegment(seg,B)
7: if pathCost(A,B′, C) ≤ pathCost(A,B,C) then
8: path.set(i, B′)
9: end if

10: end for

One important note, however, is that we do not run
our path smoother until it computes the true shortest di-
agonal path, which an any-angle planner might compute.
While getting rid of unnecessary low frequency artifacts
from planning on a regular grid would be beneficial, we
are mostly concerned in the high frequency components
that cause sensor noise.

D. Configuration Space Approximation and Replanning

The use of a single, rotationally invariant kernel for
configuration space generation, as discussed in Sec-
tion III-A, proved problematic as narrow regions within
which the robots could comfortably travel were dis-
carded due to quantization noise and kernel size. For
this reason, we reduced the kernel size and set it to the
width of the robot, making the configuration space only
approximately valid. This works well for our platform
because it is only slightly oblong (see Figure 3)

In situations where obstacles are only present on one
side of the path, we guarantee collision-free perfor-
mance by iteratively relaxing the path until it is a margin
of safety further away from the edge of the configuration
space. In situations where the path is instead straddled
on both sides by obstacles, the path relaxation allows
the path to descend into the local minimum between
these obstacles and maximizes the distance from the
nearest obstacle on both sides. Both of these scenarios
are illustrated in Figure 1.

The most significant remaining failure mode for col-
lisions is a subtle case – replanning events triggered
by a change in goal from the GCS may result in a
turn in place action that would cause a collision. The
preconditions for such a scenario are that that the robot
is in a narrow passageway when a new plan is requested
and the new destination is behind the robot. This would
normally result in an unsafe turn in place action followed
by a reasonable path to the goal. If the configuration

Fig. 3: Each of Team Michigan’s 14 autonomous ground
robots carry a Hokuyo UTM-30LX laser range-finder
and a pan-tilt color camera on a skid-steered drivetrain.

space kernel fully covered the robot, this action would
be safe and correct.

To prevent this situation for the reduced kernel, com-
pleted plans are checked for these conditions explicitly.
If necessary, the planner will temporarily issue a path to
the nearest safe area in front of the robot before honoring
the goal from the GCS. The last remaining failure case
is a modest turn in a long, narrow environment. We
could check for this case, but have not encountered it in
practice.

V. EVALUATION

Average run-times for path planning on map data from
the MAGIC 2010 competition are listed in Table I. In
its current configuration, it takes approximately 1.5 s to
acquire a full 3D snapshot by tilting a planar LIDAR
rangefinger and approximately 0.1-0.2 s to convert the
3D data to an obstacle map. Path planning takes only
0.135 s, completing long before the next 3D scan is
fully acquired. The resolution of our obstacle map and
configuration space for planning is 5 cm.

All algorithms excluding raw data acquisition are im-
plemented in Java due to its low development overhead
and aggressive just-in-time compilation. All run times
were measured on a Dell laptop with a 2.53 GHz Intel
Core2 Duo CPU.

Additionally, a histogram of the transition angles
between adjacent segments in the paths generated during
one phase of the MAGIC 2010 robotics competition is
shown in Figure 4. It is clear via this plot that after
smoothing, the prevalence of sharp angles in the paths
is significantly reduced.

5



Average Run-times over Phases 1 and 2
Task Time (s)
2D disc convolution 62.6 ms
Dijkstra’s algorithm 6.7 ms
Render distance transform 1.9 ms
Relax and smooth path 20.9 ms
Other 42.5 ms
Total 134.6 ms

TABLE I: Run-times for each stage in the proposed
algorithm averaged over all 3 Phases of the MAGIC
2010 competition run.

Fig. 4: Histogram of transition angles (in degrees) be-
tween adjacent segments in paths generated before and
after smoothing. Note the reduction of the mode at 45◦,
an artifact of 8-connected grid planning, after smoothing.

VI. SUMMARY

We have presented a practical and robust path plan-
ning algorithm using a hybrid approach through Dijk-
stra’s algorithm and iterative optimization for bounded
clearance maximization and path smoothing. This solu-
tion aims to be both computationally efficient and highly
reliable. It was heavily tested on a 14-robot system.

It is designed to handle narrow passageways with
little more clearance than the width of the robot and
does so well, even in the presence of localization and
discretization error. This method provides a compelling
alternative to artificial potential field approaches with
decaying costs around obstacles because clearance is
added after committing to a path and does not require
significant parameter tuning. Additionally, this method
will not cause a collision when smoothing the path, and
the resulting smooth path contains meaningful heading

references for the path controller.
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