
AprilCal: Assisted and repeatable camera calibration

Andrew Richardson Johannes Strom Edwin Olson

Abstract— Reliable and accurate camera calibration usually
requires an expert intuition to reliably constrain all of the
parameters in the camera model. Existing toolboxes ask users
to capture images of a calibration target in positions of
their choosing, after which the maximum-likelihood calibration
is computed using all images in a batch optimization. We
introduce a new interactive methodology that uses the current
calibration state to suggest the position of the target in the next
image and to verify that the final model parameters meet the
accuracy requirements specified by the user.

Suggesting target positions relies on the ability to score candi-
date suggestions and their effect on the calibration. We describe
two methods for scoring target positions: one that computes
the stability of the focal length estimates for initializing the
calibration, and another that subsequently quantifies the model
uncertainty in pixel space.

We demonstrate that our resulting system, AprilCal, consis-
tently yields more accurate camera calibrations than standard
tools using results from a set of human trials. We also
demonstrate that our approach is applicable for a variety of
lenses.

I. INTRODUCTION

Applications such as visual odometry [14], dense recon-

struction [8], [15], and colored point cloud segmentation [20]

are fundamentally dependent on accurate calibrations in

order to extra metrical data from images. The MATLAB and

OpenCV packages are two popular systems for calibrating

lenses [3], [4]. However, they can be error prone, especially

for lenses with significant distortion. This stems from the fact

that the quality of a calibration is dramatically affected by

the user’s choice of calibration images. A user who chooses

poor calibration target positions may find the resulting model

generalizes poorly to unseen examples. This challenge is

particularly acute for novice users, who are not aware of

the properties of the underlying estimation and optimization

methods, or end-users in dramatically different fields [2].

Even experts may be unsure that the positions they have

chosen will yield a sufficiently accurate calibration, as the

number of images needed is not constant across lenses and

should vary with the quality of the constraints. Consequently,

standard practice is to collect many more images than

necessary and verify that the model parameter uncertainty

and training error are low; if the results are unsatisfactory,

the calibration is repeated or updated with additional images.

This process is unreliable, and not very satisfying from a

theoretical standpoint.

Therefore, the primary goal of this work is to increase

calibration repeatability and accuracy in a more principled

The authors are with the Computer Science and Engineering
Department, University of Michigan, Ann Arbor, MI 48104,
USA {chardson,jhstrom,ebolson}@umich.edu
http://april.eecs.umich.edu

Fig. 1: The AprilCal GUI. Our system combines the ability

to reason about unseen targets and a novel quality metric

to make suggestions to the user about where to place the

target. The user is notified that calibration is complete once

the desired accuracy has been reached, typically achieving

< 1 pixel of error after 6-8 images.

fashion. We introduce a paradigm where fit quality is explic-

itly considered at each stage during a live calibration process.

Specifically, we automatically consider many unseen target

positions and suggest positions that will best improve the

quality of the calibration. This is achieved using a novel

quality metric based on the uncertainty of the calibration as

measured in pixels. Previous toolboxes report the uncertainty

of the model parameters, but the effect of these parameter

uncertainties on pixel coordinates can be complex. We argue

that worst-case uncertainty in pixels is more relevant for

application performance and more natural for the user. Worst-

case pixel uncertainty also serves as a principled basis to

automatically determine when enough images have been

collected.

We also introduce a new method for robustly bootstrapping

a calibration that enables our system to make sensible

recommendations even when little or no prior information

is available about the lens. Our system also makes use of a

calibration target composed of AprilTags [16], which, unlike

previous approaches, can still be detected when individual

markers are occluded. This enables a wider variety of target

positions, which our method successfully exploits when

making suggestions to the user.

We validated our camera calibration toolbox via a 16-

participant study mostly compromised of users who had

never calibrated a camera. Despite their lack of expertise,

they were consistently able to use our software to produce



accurate calibrations. The same novice users also used the

OpenCV calibration toolbox and invariably produced poorer

calibrations, in some cases yielding errors of tens of pixels.

In addition, we show that our toolbox can calibrate a wide

range of lenses with an explicit accuracy guarantee.

The contributions of this work include:

• A framework for generating target position suggestions

to guide users during camera calibration

• A new evaluation metric for camera calibration that

enables high confidence in calibration parameters ev-

erywhere in the image

• A bootstrapping setup to enable interactive calibration

even before all parameters are fully constrained

• An evaluation that demonstrates the robustness of our

approach using a human-subjects study of 16 people,

mostly novices.

AprilCal is released as part of the APRIL Robotics Toolkit

and is available at http://april.eecs.umich.edu

II. BACKGROUND

A wide variety of camera calibration approaches exist,

spanning different optimization methods, calibration target

styles and intrinsic model designs. Many previous methods

have used multiple views of a planar target [22], [3], [4]

or a single view of a carefully constructed 3D target [13].

Other methods have used laser pointers or other bright

lights to facilitate calibration of networks of cameras. Such

approaches typically still require bootstrapping by calibrating

some cameras in the network with a constructed target [1],

[21]. All of these prior methods share the same approach

to calibration: a user first collects a set of images, then

runs a batch calibration process on that data. This is in

contrast to our approach, where the entire calibration process

is interactive and additional data is solicited until the desired

accuracy has been achieved.

A dominant paradigm for calibration involves capturing

several images of a planar target. These approaches (ours

among them) make associations between points detected in

the image and corresponding world points on the target

whose relative position are known by construction [22].

Simultaneous optimization over the intrinsic parameters for

the camera model and the extrinsics for each target yield an

estimate of the model parameters. Using such an approach

requires the choice of 1) optimization method and 2) lens

model.

Among the many possible optimization techniques, we

adopt a standard, iterative non-linear-least-squares approach,

using a sparse matrix solver as the back-end. This method

is roughly analogous to standard approaches in GraphSLAM

and bundle adjustment [5], [12], [11]. Our calibration vector

x consists of all the model parameters (roughly 10) for the

camera, in addition to the 6-DOF position of each calibration

target. For each image containing k extracted 2D image

points, we add 2k linearized constraints as rows in the

Jacobian matrix J . Each row-pair corresponds to projecting

a feature from a known 3D coordinate on the calibration

target into pixel coordinates, capturing both the unknown

position of the camera and the unknown camera parameters.

Iterative solutions to Eqn 1 yield a locally-optimal set of

model parameters for x.

JTΣ−1
z J∆x = JTΣ−1

z r (1)

xi+1 = xi +∆x (2)

Here, Σz is the matrix of prior covariances for the target de-

tector, and r is the residual, the observed minus the predicted

pixel coordinates for each point. The correct convergence of

x to the global minimum is sensitive to initialization of x0;

we will discuss our approaches to this in Section III-A.

There are also a wide variety of models for camera

intrinsics, starting with the fundamental pinhole model [7].

However, using the ideal pinhole model in isolation will

poorly capture the dynamics of most real world lenses,

especially those with a wide field of view. Therefore, many

models extend this method by accounting for the lens dis-

tortion explicitly. For example, the MATLAB toolbox uses a

polynomial Taylor series with 3-5 distortion terms to approx-

imate these effects after projecting with the pinhole camera

model [3]. In contrast, we have found that a polynomial as

a function of θ, the angle from the principle axis, yields as

good or better1 calibrations, often with fewer distortion terms

for the lenses tested, increases the stability of the calibration

process, and handles Z ≤ 0. This is a reduced version of

the model by Kannala and Brandt [10], which also includes

tangential distortion.

The details of this angular polynomial model are shown in

Equations 3-8, where X , Y , and Z represent the 3D position

of a point, θ the angle from the principal axis, ψ the angle

around the principal axis, xdn the distorted point before

converting to distorted pixel coordinates, xdp, via the matrix

K. The number of distortion coefficients is variable, though

we use three to four in this work.

θ = arctan 2
(

√

X2 + Y 2, Z
)

(3)

ψ = arctan 2 (Y,X) (4)

r(θ) = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9 + . . . (5)

xdn =
[

r(θ) cos(ψ), r(θ) sin(ψ)
]T

(6)

K =





fx 0 cx
0 fy cy
0 0 1



 (7)

xdp = K ·
[

xdn, ydn, 1
]T

(8)

In a similar spirit to this paper, several others have sought

to make calibration easier, less time consuming and less error

prone. For example, the ROS calibration package for the

PR2 now has specific guidelines for the user about which

checkerboard positions are required for getting a “good”

calibration [18]. However, even with good rules of thumb, it

is still possible that a user will collect “bad” frames that

1The details of this analysis are omitted due to space limitations. However,
AprilCal can perform model selection to evaluate all available models as a
post-processing step. See http://april.eecs.umich.edu for details.



lead to an inaccurate calibration. While it is possible to

manipulate a calibration target automatically using a robotic

arm [17], our approach can be used to choose desired target

views during calibration. Others have shown that in some

cases, it can be possible to calibrate a distorted camera using

only a single image [2]. However, this approach does not

explicitly constrain the accuracy of the resulting calibration,

and works with only a very specific distortion model. In

contrast, our method ensures that the user takes sufficient

images to meet their desired level of accuracy, typically 6-8

images to achieve a < 1 pixel confidence.

Finally, as suggested in Ranganathan’s work on non-

parametric intrinsics models [19], we adopt the use of a strict

testing set to provide a more rigorous evaluation of the actual

accuracy of the proposed method. This is in contrast to the

standard practice of reporting only the training error.

III. PROPOSED METHOD

As outlined in Section I, our proposed method improves on

the state of the art by offering a virtual calibration assistant

that provides suggestions to users and automatically notifies

them when the calibration has reached the specified accuracy.

Our approach leverages a calibration target consisting of a

mosaic of AprilTags [16], which can be detected robustly on

the live video stream, even if parts of the target are occluded.

Users interact with a GUI to match target positions suggested

by our software. After each target position is achieved, the

next best position is computed, repeating until the desired

accuracy is achieved.

Our system divides the calibration into two sequential

phases: bootstrapping, and uncertainty reduction. In the

bootstrapping phase, we start with a restricted camera model

with very few parameters, relaxing to the full model as new

images of the target are added. Once all model parameters

are fully constrained (typically after 3 images), we switch to

the uncertainty reduction phase until the desired accuracy

is achieved. Transition from the first to second phase is

transparent: in both cases, the UI remains the same.

A. Bootstrapping a live calibration from scratch

Suggesting target positions is an inherently cyclic process:

making good proposals that are actually realizable given the

lens distortion requires a reasonably accurate calibration.

However, a good calibration relies on having already cap-

tured several target positions to properly constrain all model

parameters [22]. Therefore, to initialize the model parameters

as quickly as possible, we initially use a reduced camera

model; at the start of each calibration we assume that the

focal center is at the center of the image and that there is no

image distortion. This allows us to estimate the focal length

after a single frame.

We can use this limited model immediately to choose

the next-best target position, relaxing the reduced model

to the full model, shown in Eqns. 3 - 8, as more frames

are taken. This method is intended to select the target

positions that best constrain the calibration while avoiding

degenerate combinations [22]. We compute the calibration

initialization using a standard intrinsics matrix estimation

technique – estimating the Image of the Absolute Conic

(IAC) from perpendicular vanishing points and then decom-

posing it to estimate the intrinsics matrix [22], [9]. Using

this initialization method, we score potential suggestions by

sampling from the observation model to empirically compute

the uncertainty of the intrinsics estimate. In other words, we

prefer suggestions that yield intrinsics estimates with low

variance. In our implementation, we estimate the focal length

over 20 trials, each time adding uniformly-random, zero-

mean noise to the image coordinates of the tag detections.

Some lenses generate too much distortion for IAC intrin-

sics matrix estimation. However, methods exist to remove

the distortion from a single image [6], [2]. Such methods

could be easily added to AprilCal, but this was unnecessary

for the moderately distorted, wide field of view lenses tested

in this work (see Figure 9).

Before the first suggestion can be shown to the user, we

must obtain a cursory estimate of the camera calibration.

We achieve this by automatically selecting the first image

“behind the scenes” as the user moves the target to the

center of the screen. However, the very first frame may not

provide a robust initialization. To make this initialization

robust, we score the live image stream and replace the first

frame (removing the previous one) every time we find a

new frame with a lower intrinsics uncertainty, either until

a threshold is met, or the first suggestion has been computed

and captured. This method reliably picks a satisfactory first

frame because the user is guided to move the calibration

target to a suggestion as soon as any frame has been captured

and the intrinsics matrix has been estimated.

Once the calibration has been initialized, we can con-

sider the effect of observing an unobserved frame on the

uncertainty of the parameter estimates. For each candidate

target position drawn from a coarse grid in pose space, we

score the intrinsics estimate resulting from the combination

of 1) the frames acquired so far (ignoring initial frames

that were replaced) and 2) the projection of the candidate

calibration target with the current estimates of the calibration

parameters. As before, we sample from the observation

model to estimate the uncertainty of the intrinsic parameters,

choosing the suggestion that reduces the parameter variance

the most.

In addition to providing full-rank constraints for all pa-

rameters of the complete camera model, the bootstrapping

process also provides a good initialization for x0 in the

optimization described in Eqn.1. As the model is succes-

sively relaxed, we pass through the initialization from the

previous step, yielding good estimates for all the intrinsics

parameters. Once the distortion parameters are introduced,

we initialize them to zero. Given sane intrinsics estimates,

these parameters converge well in practice.

B. Pixel-based calibration error metric

Once all intrinsic parameters are fully constrained, the

next goal is to find enough additional target observations so

that we are confident that the resulting model parameters are



Fig. 2: Computing the Max Expected Reprojection Error

(Max ERE) from the test points, and resulting error dis-

tributions after 3 and 5 images. Our sampling-based error

metric can be used with any intrinsics model and allows us

to automatically ensure the calibration is well constrained

everywhere without requiring the user to collect a test set.

The set of samples with the Max ERE are circled in red.

Algorithm 1 COMPUTE MAX ERE(currentCalibration)

(x,Σ) = getModelPosterior(currentCalibration)

meanCal = makeCal(x)

testPointsXYZ = makeTestGrid(meanCal, 5, 5)

calSamples = [sampleCal0(x,Σ), · · · , sampleCaln(x,Σ)]
MaxERE = 0

for all ~t ∈ testPointsXYZ do

ERE = 0

for all sampCal ∈ calSamples do

ERE += 1

n
|meanCal.project(~t) - sampCal.project(~t)|

end for

MaxERE = max(ERE, MaxERE)

end for

return MaxERE

accurate. Previous approaches have used Mean Reprojection

Error (MRE) and Mean Squared Error (MSE) as primary

indicators of calibration quality. However, this is problematic

because these are training errors, rather than testing errors.

Using one of the prior works, if the training images are

selected poorly, the resulting MRE could be low, yet the

generalization performance (e.g. as measured on a test set)

could be very poor. Unfortunately, collecting a proper testing

set can be onerous – for our evaluation we use an expert-

selected set of 60 or more images from all over the camera’s

field of view. Especially for novice users, it is not reasonable

to expect they would be able to collect a “good” testing set.

Even for expert users, this process is time-consuming and

requires careful attention.

Therefore, our approach is to derive a more principled esti-

mate of the testing error that can be computed automatically

given an intermediate state of the calibration. Our proposal

is called “Max Expected Reprojection Error” (Max ERE),

which we can compute at any stage during the calibration

by sampling from the current posterior distribution over the

model parameters. We then project a series of 3D points

through each sampled calibration, producing a distribution

of pixels for each test point, whose mean error is the “ERE”.

Finally, we take the max of the EREs over all the test points.

This ensures that we will properly weight the part of the

image where the model is currently the most uncertain. We

choose the fixed 3D points carefully so that they will project

into all parts of the image. Our current implementation uses

a 5 x 5 grid of test points distributed so their projections will

uniformly cover the image (see Figure 2). See Alg. 1 for an

overview of the implementation.

Computation of the Max ERE uses the estimate of the

marginal posterior covariance of the model parameters:

P̄ (m|z0, · · · , zn). This distribution is derived by first com-

puting the joint distribution of the model parameters and each

target extrinsics, given all the observations of those targets.

Suppose we have collected n images of targets, then we can

“marginalize-out” the target extrinsics:

P̄ (m|z0, · · · zn) =

∫

T0,··· ,T1

P (m,T0, · · ·Tn|z0, · · · zn)

(9)

where m = {fx, fy, · · · , k1, · · · }, Ti is a 6DOF rigid-body

transform, and zi contains the x, y pixel locations of the

centers of every AprilTag in image i. In practice, we assume

the joint distribution in Eqn. 9 can be approximated as multi-

variate Gaussian:

N(x,Σ) =

N























m

T0
...

Tn











,













Σm,m Σm,T0
· · · Σm,Tn

ΣT0,m

. . .
...

...
. . .

ΣTn,m · · · ΣTn,Tn

























(10)

This allows the marginal P (m|z0, · · · ) = N(m,Σm,m)
to be computed trivially by dropping the other rows and

columns of the covariance matrix. Computation of Σ requires

inverting the sparse dim(x) by dim(x) information matrix I,

which is derived from the observed target positions (similar

to Eqn 1):

I = JTΣ−1
z J (11)

where each row of J is the linearized projection equation

describing how a point on the target projects into the image,

given the model parameters m and target position Ti. Cru-

cially, this process depends on an estimate for the detector

accuracy in pixels, σz , which must be known in advance.

For AprilTag, we have empirically found the accuracy to

be relatively constant across lenses with image width as a

satisfactory predictor. Proper focus of the lens is assumed.

σz = 7× 10−5 × width (12)

Detector accuracy was fit independently for a number of

camera configurations (see Figure 8) using 60+ image cali-

bration datasets for each. The resulting accuracies were then

used to compute the linear model in Eqn. 12.

IV. IMPLEMENTATION

AprilCal is implemented in Java and runs at 25 FPS

with 640 × 480 images on a quad-core Intel i7-3740QM

@ 2.7GHz. Using a mosaic of AprilTags as our calibration

target allows us to automatically detect the target at video

rates, with processing time typically dominated by AprilTag



detection. We have found that rigid mounting at an office

supply store is inexpensive and yields a target durable enough

for many uses. In addition, we can detect and recognize

individual tags without observing the entire target. This

makes it possible to add constraints in the corners of images,

even for highly distorted lenses. In the multi-camera case,

this allows calibration of cameras with adjacent, but non-

overlapping, fields of view.

In addition to target detection, our implementation requires

significant CPU when determining the next suggestion. In

our implementation, we score a fixed set of about 60 tar-

get positions regularly distributed throughout the field of

view. This process depends on incorporating hypothetical

observations into the calibration optimization framework,

and then estimating the marginal distribution over the model

parameters. As more images are acquired, and the size of the

joint distribution grows, this can take up to 1 or 2 seconds.

However, this scoring process only occurs a small number

of times: once after each suggestion has been achieved by

the user.

The AprilCal user interface is designed primarily to allow

the user to correctly match the target positions suggested

by the system. As shown in Figure 1, we use a set of

unique colors to show how the desired target position (hollow

rectangles) should be matched by the live detections (solid

rectangles). The UI also automatically offers basic advice to

the user via textual prompts about how to move the target

to match the desired pose. When the calibration is deemed

complete, the user is then automatically presented with the

rectified video stream. This allows the user to qualitatively

verify that the calibration is accurate, primarily by checking

for straightness of projected lines.

V. HUMAN TRIALS

We conducted a series tests with human subjects2 to

measure the effectiveness of AprilCal and to compare it to the

widely used OpenCV method. Our user population consisted

of undergraduate students at the University of Michigan.

Only 3 of the 16 subjects reported any previous experience

with camera calibration.

Our experiment protocol was as follows: each partici-

pant was asked to calibrate the same camera and medium-

distortion lens with two different methods (see Figure 3).

We used a Point Grey Chameleon CMLN-13S2M-CS in

648 × 482 8-bit grayscale mode with a 2.8mm Tamron

lens (Model 13FM28IR). This lens has a medium amount

of distortion – significant enough that several Taylor series

terms are required to model it, but still with a moderate field

of view (only 93° horizontal FOV).

The two methods we evaluated were OpenCV’s calibration

using automatic checkerboard detection and AprilCal using a

mosaic of AprilTags. Participants were given a set of printed

instructions. If they asked questions to the experimenter,

they were given comprehension-level clarification on the

2Our study was reviewed by the University of Michigan Humanities
Institutional Review Board and designated “exempt” with oversight number
HUM00066852.

(a) (b)

Fig. 3: Example images taken by the participants for both

Method A (Open CV) and Method B (AprilCal).

instructions or advised to re-read the instructions. Partici-

pants then followed a checklist to first collect four samples

using OpenCV, followed by four samples using AprilCal.

Additionally, participants watched a video demonstrating

calibration with each method. In Method A (OpenCV),

participants interacted with a GUI showing live detections of

the chessboard, using the “space” key on a wireless keyboard

to capture a frame. In Method B (ApriCal), the frames are

automatically taken when the participants move the targets

close enough to the suggested pose.

In contrast to AprilCal, which provides detailed guidance

throughout the calibration, OpenCV’s calibrate.cpp

provides no in-application suggestions. Therefore, we de-

signed a set of instructions for calibrating with their software.

Our goal was primarily to emulate the experience of a first-

time user who downloads this software from the Internet.

Therefore, we provided users with some example pictures

from the MATLAB Toolbox web page. The best written in-

structions we found were on the ROS tutorial for monocular

camera calibration [18], which we also included. These are:

• checkerboard on the camera’s left, right top and bottom

of field of view

• checkerboard at various sizes

• close (fill the whole view)

• far (fill ~1/5 of the view)

• checkerboard tilted to the left, right top and bottom

After reading these instructions, participants were then in-

structed to take 10-16 images in each of the 4 trials (on the

same lens).

VI. EVALUATION

We evaluated AprilCal on several fronts. First, we report

the results from our human subjects study to demonstrate

the robustness of our approach to user error. Then, we

demonstrate that our novel Max ERE metric is a good proxy

for testing error. Finally, we demonstrate that AprilCal can

be successfully used on a variety of lenses.

A note on evaluation of calibration quality: in all of

our evaluations, we use testing error to indicate calibration

quality. Each testing set is a collection of 60+ images from

all over the field of view, including the corners of the images

and at various scales. Because we do not have ground truth

positions for the targets in the testing set, the error we



Dataset Lens Model Reprojection Error

Mean Max

OpenCV Radial, 3 distortion terms 0.728 38.646
AprilCal Radial, 3 distortion terms 0.229 1.651
AprilCal Angular, 4 distortion terms 0.203 1.444

TABLE I: Mean and max testing errors averaged over all

human subject trials in comparison to a 65 image reference

dataset for the same lens. Results are significant with p <

6.3 × 10−7 for both mean and max errors and all pairs of

rows.

report is after we optimize the target extrinsics to best fit the

fixed model parameters for a given calibration. While this

in general results in lower reprojection errors, it ensures that

all models are fairly evaluated and still allows discrimination

between good and bad calibrations.

Furthermore, Mean Reprojection Error (MRE) is typically

reported as a summary of calibration quality, as it is simple to

understand and robust to detector error. However, it can also

often mask systematic errors in the underlying calibration.

Therefore, we also report Max Reprojection Error on the

test set – this ensures that calibrations are evaluated by their

performance everywhere in the image.

A. Novice Calibrators using AprilCal and OpenCV

Our study results show that novices do a significantly

better job calibrating when using AprilCal than when using

OpenCV (p < 6.3 × 10−7). For example, with testing

set errors averaged over all participants, the testing MRE

using OpenCV is approximately three times that when using

AprilCal (see Table I). The disparity is even greater when

considering the Max Reprojection Errors – OpenCV aver-

ages 38 pixels (6% of the image), whereas AprilCal averages

a much lower 1.6 pixels for the same model. Interestingly,

no OpenCV calibration yielded a max reprojection error

better than the worst max reprojection error from AprilCal

(2.02 pixels). This may be because the sorts of images that

novice users capture, even when attempting to follow the

ROS instructions, don’t constrain the whole lens well. With

the target suggestions provided by AprilCal, even new users

of camera calibration software can produce calibrations with

very low worst-case reprojection errors. The error histograms

for both populations is shown in Figure 4.

The human study results can also help us understand where

in the image the calibrations disagree. Figure 6 depicts the

expected error between the human trials and a 65 image

reference calibration. From the images shown, it is clear that

the OpenCV calibrations fail to capture the lens model in

the image corners. This can be explained by both the need

to observe the whole calibration target in OpenCV and the

difficulty for users to predict where constraints are needed.

In addition to showing that AprilCal calibrations are more

accurate, the user study results also show that calibrations

with AprilCal are more consistent. Figure 5 depicts the dis-

tribution of focal lengths and focal centers for both AprilCal

and OpenCV. While both distributions have similar means,

Fig. 4: Mean and Max Reprojection Errors (on a 65-

image test set) for calibrations produced using AprilCal

and OpenCV. Users produced significantly more reliable

calibrations using the proposed method (p < 6.3 × 10−7).

For OpenCV, 3 MREs and 46 MaxREs not visible within

plot extents.

Dataset Focal length (x) Focal center (x)

Mean Std dev Mean Std dev

OpenCV 378.9† 9.0† 327.8† 1.9†

AprilCal 381.7 1.2 328.0 0.8

Fig. 5: Distribution of focal lengths and focal centers for all

trials in the human study. While the mean parameter values

from calibrations with AprilCal and OpenCV are similar, the

standard deviations for the OpenCV calibrations are much

higher. †One OpenCV outlier that would have further skewed

the calculations was omitted from the calculations and is not

visible within the plot extents. Best viewed in color.

the AprilCal standard deviations are 7.5× smaller for focal

lengths and 2.37× smaller for focal centers.

B. Evaluating the Max ERE metric

We designed the Max ERE to be a good measure of

calibration quality. Specifically, we want users to specify

the accuracy they need for their application (e.g. < 1 px),

and if the Max ERE falls below that threshold, then the

calibration can confidently be said to be that accurate. To

validate these claims, we computed several variants of testing

error over a large number of AprilCal trials. After each

image is added, we evaluate the performance using Max

ERE, as well as on an independent testing set using Max

(100th percentile), 99.5th percentile, and mean reprojection

errors. As can be seen in Figure 7, our sampled-MRE metric

corresponds closely to the highest percentiles of testing error.

This shows empirical evidence that our metric is effective.

C. Accuracy of AprilCal on a Variety of Lenses

In addition to performing reliably for a wide range of

users, AprilCal also produces accurate calibrations for a



(a) OpenCV (Radial, 3 dist. terms) (b) AprilCal (Radial, 3 dist. terms)

(d) Cross section from the focal center to the furthest corner in the image

Fig. 6: Heatmaps and cross section depicting per-pixel mean

reprojection error between test subject calibrations and a 65

image testing set. Reprojection errors were calculated by

projecting a point for every pixel in the reference calibration

through all test subject calibrations, then computing the

pixel distance. The reference calibration used an angular

polynomial model with 4 terms, as it had the lowest mean

and max training errors. AprilCal calibrations show low error

in all parts of the image, while OpenCV calibrations have

very high error in the corners (see arrow).

number of camera and lens configurations. Each lens was

calibrated multiple times by one of the authors using the

guidance provided by AprilCal (typically requiring 6-8 im-

ages in total). A separate 60+ image testing set was collected

to evaluate the accuracy for each configuration. To fairly

compare results from different lenses, we compute each lens’

testing error against a reference calibration computed from

the corresponding test set. This eliminates the effects of

detector error on testing error, which varies for different

images sizes (See Eqn 12). For each target point detected

in the testing set, we project through both the reference

calibration and the calibration using AprilCal, and compute

the Mean, 99.5th percentile and Max Reprojections Errors.

Figure 8 shows the testing error for six configurations that

our lab uses for various robotics applications, including

stereo odometry, object detection and overhead ground truth.

In each case, the testing MRE is significantly below one

pixel. Example images from each configuration are shown

in Figure 9.

VII. SUMMARY

AprilCal is an interactive calibration tool that provides

live feedback on the state of the calibration and produces

tightly-distributed calibration parameters even when used by

3 4 5 6 7 8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Num. Images

E
rr

o
r 

(p
ix

el
s)

Testing Max−RE
Max ERE
Testing 99.5%−tile
Testing MRE

Fig. 7: Our novel Max Expected Reprojection Error (Max

ERE) metric (red) correlates highly with the 99.5th percentile

of reprojection errors on an independently captured test set.

The Max ERE allows us to automatically compute a rigorous

accuracy score for a partial calibration without needing an

exhaustive test set. Error bars reflect std. error of the mean.

(A) (B) (C) (D) (E) (F)

0.0

0.5

1.0

1.5 Testing MRE
Testing 99.5%−tile
Testing Max−RE

Lens DFOV Resolution Format

(a) Fujinon YV2.2x1.4A-2 143◦ 648× 482 Gray
(b) Tamron 13FM22IR 146◦ 648× 482 Gray
(c) Tamron 13FM28IR 114◦ 648× 482 Gray
(d) Boowon BW38B 83◦ 752× 480 Color
(e) Boowon BW3M30B 121◦ 648× 482 Gray
(f) Boowon BW3M30B 121◦ 1296× 964 Color

Fig. 8: Testing error for a variety of camera configurations

using AprilCal. The Diagonal Field Of View (DFOV) was

estimated from the testing sets for each configuration. Error

bars reflect std. error of the mean.

novices. We have leveraged a novel calibration quality metric

(Max ERE) to automatically determine whether a calibration

is sufficiently accurate, without requiring a user to collect

a rigorous testing set. We conducted a 16-person human

subjects study to show that even novice users can produce

consistent, quality calibrations using such a system.

We have evaluated AprilCal in a variety of ways, and

demonstrated that it is a suitable replacement for the cur-

rently available calibration toolkits, which use a batch cal-

ibration process and training error as a quality metric. Our

desire is to make accurate camera calibration available to a

wider audience who can use the resulting model parameters

confidently in a range of applications.



(a) Fujinon YV2.2x1.4A-2 (648× 482) (b) Tamron 13FM22IR (648× 482) (c) Tamron 13FM28IR (648× 482)

(d) Boowon BW38B (752× 480) (e) Boowon BW3M30B (648× 482) (f) Boowon BW3M30B (1296× 964)

Fig. 9: Example images for each of the configurations evaluated in Figure 8. These lenses are representative of those known

to work with AprilCal. Image contrast adjusted for clarity.

ACKNOWLEDGMENTS

This work was funded by U.S. DoD Grant FA2386-11-1-

4024.

REFERENCES

[1] J. Barreto and K. Daniilidis. Wide area multiple camera calibration
and estimation of radial distortion. In Omnivis-2004, ECCV-2004

workshop, 2004.
[2] J. Barreto, J. Roquette, P. Sturm, F. Fonseca, et al. Automatic camera

calibration applied to medical endoscopy. In 20th British Machine

Vision Conference (BMVC’09), 2009.
[3] J.-Y. Bouguet. Camera calibration toolbox for MATLAB, July 2010.
[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.
[5] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization

and mapping via square root information smoothing. International

Journal of Robotics Research, 25(12):1181–1203, December 2006.
[6] F. Devernay and O. Faugeras. Straight lines have to be straight.

Machine Vision and Applications, 13(1):14–24, 2001.
[7] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach.

Prentice Hall Professional Technical Reference, 2002.
[8] A. Geiger, J. Ziegler, and C. Stiller. StereoScan: Dense 3d reconstruc-

tion in real-time. In IEEE Intelligent Vehicles Symposium, Baden-
Baden, Germany, June 2011.

[9] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.
[10] J. Kannala and S. S. Brandt. A generic camera model and cal-

ibration method for conventional, wide-angle, and fish-eye lenses.
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
28(8):1335–1340, 2006.

[11] K. Konolige. Sparse sparse bundle adjustment. In British Machine

Vision Conference, Aberystwyth, Wales, August 2010.

[12] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In ICRA, Shanghai,
May 2011.

[13] M. Li. Camera calibration of a head-eye system for active vision.
Computer VisionECCV’94, pages 541–554, 1994.

[14] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM:
A system for large-scale mapping in constant-time using stereo.
International Journal of Computer Vision, pages 1–17, 2010.

[15] R. A. Newcombe and A. J. Davison. Live dense reconstruction with
a single moving camera. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 1498–1505. IEEE, 2010.
[16] E. Olson. AprilTag: A robust and flexible visual fiducial system. In

Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), May 2011.
[17] V. Pradeep, K. Konolige, and E. Berger. Calibrating a multi-arm

multi-sensor robot: A bundle adjustment approach. In International

Symposium on Experimental Robotics (ISER), New Delhi, India,
12/2010 2010.

[18] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, 2009.

[19] P. Ranganathan and E. Olson. Gaussian process for lens distortion
modeling. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), October 2012.
[20] J. Strom, A. Richardson, and E. Olson. Graph-based segmentation

for colored 3D laser point clouds. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
October 2010.

[21] T. Svoboda. A software for complete calibration of multicamera
systems. In Electronic Imaging 2005, pages 115–128. International
Society for Optics and Photonics, 2005.

[22] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(11):1330–1334, 2000.


