Linear Algebra Review

Part I: Geometry

Edwin Olson
University of Michigan

The Three-Day Plan

- Geometry of Linear Algebra
 - Vectors, matrices, basic operations, lines, planes, homogeneous coordinates, transformations
- Solving Linear Systems
 - Gaussian Elimination, LU and Cholesky decomposition, over-determined systems, calculus and linear algebra, non-linear least squares, regression
- The Spectral Story
 - ▶ Eigensystems, singular value decomposition, principle component analysis, spectral clustering

Vectors

A vector is a motion in space:

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Vectors can be added

$$\left[\begin{array}{c}2\\1\end{array}\right]+\left[\begin{array}{c}1\\-3\end{array}\right]=\left[\begin{array}{c}3\\-2\end{array}\right]$$

Dot Products

- Produces a scalar
- Measures the similarity in direction of two vectors.

$$\left[\begin{array}{c}2\\1\end{array}\right]\cdot\left[\begin{array}{c}3\\2\end{array}\right]=2*3+1*2=8$$

 Geometry: Project one vector into the direction of the other. Then rescale by length of the second vector.

Checkpoint

What is the dot product of a vector with

itself?

What is the dot product of two orthogona

vector magnitude

What is the dot product of two orthogonal vectors?

Computing orthogona

30: [a b c] => [-b a 0] or [-c 0 a] or [0 -c b] or ...

how many? up to scale (including negative).

20: [a b] => [-b a]

In fact these (trivial) perpendicular vectors form a plane of perpendicular vectors. (Any linear combination of those points yields another perpendicular vector by superposition.)

 How can we compute vectors w product will be zero?

• 2D?

▶ How many vectors are perpendicular?

• 3D?

How many vectors are perpendicular?

Constructing perpendicular vectors in 3D

It's actually too easy... we can ask how many vectors are simultaneously perpendicular to two vectors.

- I.e., where do the two planes intersect? (along a line!)
 - (how many perpendicular vectors?)

Cross Product (3D)

 Orthogonal vector can be constructed in 3D by cross product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

Checkpoint

View from eye

what is lookdir?

Lines and Hyperplanes

 What's the relationship between a line, a plane, and a hyperplane?

 Is there a generic way of writing them, regardless of dimension?

$$n \cdot x = b$$

What do n and b mean, geometrical

n is the normal to the hyperplane

b is the distance (in the direction of normal) from the hyperplane to th origin...

e.g. consider point bn, which lies o plane.

Planes versus Lines

- In 2D, a hyperplane and a line have the same form.
 - A line "pins down" all but one degree of freedom
 - Can move in one dimension up and down the line
 - A hyperplane "pins down" only one degree of freedom.
 - Can move in all but one degree of freedom.
- In short:
 - A single linear equation yields a hyper-plane.
 - ▶ N-I simultaneous linear equations yields a line.

Checkpoint

 A point is the intersection of how many hyperplanes?

 What point on a hyperplane defined by n and b is closest to some other point p?

Why is this formulation better than y=mx

construct a point on the plane: nb.

(nb - p) \cdot n...

in fact, this works for any point on the plane (you get the same answer... prove why.)

Matrix: The Basics

- A matrix is a rectangular array of numbers.
 - Has geometric interpretation too... but first, let's start with something simple.

When can matrices be added together?
 (And how does addition work?)

x is a vector, what are its

Matrix-vector product

• Mechanics of matrix-vector multiplication:

$$\left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & i \end{array}
ight] \left[egin{array}{cccc} j \ k \ l \end{array}
ight] = \left[egin{array}{cccc} aj+bk+cl \ dj+ek+fl \ gj+hk+il \end{array}
ight]$$

$$\begin{bmatrix} \boldsymbol{a} & b & c \\ \boldsymbol{d} & e & f \\ \boldsymbol{g} & h & i \end{bmatrix} \begin{bmatrix} \boldsymbol{j} \\ k \\ l \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}\boldsymbol{j} + b\boldsymbol{k} + c\boldsymbol{l} \\ \boldsymbol{d}\boldsymbol{j} + e\boldsymbol{k} + f\boldsymbol{l} \\ \boldsymbol{g}\boldsymbol{j} + h\boldsymbol{k} + i\boldsymbol{l} \end{bmatrix} \qquad \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{d} \\ \boldsymbol{g} \end{bmatrix} \boldsymbol{j} + \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{e} \\ \boldsymbol{h} \end{bmatrix} \boldsymbol{j} + \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{f} \\ \boldsymbol{i} \end{bmatrix} \boldsymbol{l}$$

- Two different interpretations:
 - Dot product of rows with vector
 - Linear combination of columns

$$\left[\begin{array}{cc}2&-1\\1&1\end{array}\right]\left[\begin{array}{cc}3\\-4\end{array}\right]$$

Linear Systems

 We can use a variable instead of a vector, which gives us a linear system.

$$\left[\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array}\right] x = \left[\begin{array}{cc} 2 \\ 4 \end{array}\right]$$

What simultaneous equations does this represent?

Matrix Geometry: Row story

- Each row of a linear system represents a hyperplane. (In 2D, that's also a line!)
- The solution to the system is the intersection of those hyperplanes

Matrix Geometry: Column Story

- Each column can be interpreted as a vector
 - ▶ How far do we go in each direction?

$$\left[\begin{array}{cc} 2 & -1 \\ 1 & 1 \end{array}\right] x = \left[\begin{array}{c} 2 \\ 4 \end{array}\right]$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} x_1 + \begin{bmatrix} -1 \\ 1 \end{bmatrix} x_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Matrix-matrix product

- Think of the right hand side as a list of column vectors.
 - Each is transformed separately via a matrix-vector product.

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix} = \begin{bmatrix} - & - & - & - \\ - & - & - & - \\ - & gk + hn + iq & - \end{bmatrix}$$
$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 3 & 3 \end{bmatrix}$$

- Finger sweeping rule should be second nature!
 - Left finger sweeps left to right
 - Right finger sweeps top to bottom

Checkpoint

 Which of the following multiplications are sensible?

Matrices as projections

 Matrix multiplication projects from one space to another.

Data projected into new coordinate system

Data in original coordinate system

Rotation Matrices

- A special kind of projection
 - Preserves scale, distance, and relative orientation. (It's rigid.)
 - It's orthonormal too!
- Write a rotation matrix for 45 degree rotation around the Z axis.

Direction of new x in

Direction of old x in new coordinate system.

Rotation

Really useful in Vis... display a model of your robot oriented properly, for example...

 Consider "rotate +90 degrees around the Z axis"

Use right-hand to represent the coordinate frame

- Which way is +90 degrees?
 - Point right thumb in the direction of the axis of rotation
 - Fingers curl in the positive direction

Translation Matrices

• How do we do a translation?

Homogenous Coordinates

- We'll introduce a new convention, homogenous coordinates.
- We write points just the way we did before, but add an extra row:
 - The extra row is a scale factor for the whole vector.

$$p=\left[egin{array}{c} x \ y \ z \end{array}
ight] \qquad {f becomes} \qquad p=\left[egin{array}{c} x \ y \ z \ 1 \end{array}
ight] \qquad {f there's a whole related set of geometry, but all we need to know in this lecture is that there's a funny scale factor.}$$

What point does this correspond to? $\begin{bmatrix} 10 \\ 20 \\ 15 \end{bmatrix}$

Translation

Suppose I want to shift all objects by Tx, Ty, Tz:

$$\begin{bmatrix} x + T_x \\ y + T_y \\ z + Tz \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation

- How about a rotation of 90 degrees around the Z axis?
 - ▶ (This time in homogeneous coordinates)

More complex rotations

- How about rotating 37.2 degrees around the vector
 [0.3 0.6 0.4]
 - Don't worry. Nobody can do that in their head!
 - But it'll look like this:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & 0 \\ R_{10} & R_{11} & R_{12} & 0 \\ R_{20} & R_{21} & R_{22} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rigid-Body Transformations

- The product of two rigid-body transformations is always another rigid-body transformation!
 - Does order of multiplication matter?
- So no matter how the object has been translated or rotated, we can describe its position with a single 4x4 matrix, which has the structure:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & T_x \\ R_{10} & R_{11} & R_{12} & T_y \\ R_{20} & R_{21} & R_{22} & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

How to "undo" a transformation?

Matrix Inverse

- Definition: $AA^{-1} = I$
- Dot product interpretation
 - Find a vector whose dot product with the first row is one, and whose dot product with every other row is zero.
 - Repeat this for every row.

Distributive property: (Prove it)

$$(AB)^{-1} = B^{-1}A^{-1}$$

When does the inverse exist?

- Inverse exists iff the matrix has full rank.
- The "row" story: the matrix describes a set of intersecting hyperplanes.
 - Is their intersection a point? A line? Something higher dimensional?
- The "column" story: the column vectors describe "directions" that you can move in. Can you get everywhere?
- Easy cases: rigid-body transformations? rectangular matrices?
- We'll talk more about this in the next lectures.

Transpose

Definition:

$$A_{i,j}^T = A_{j,i}$$

Allows us to write dot product:

$$a^Tb$$

Distributive property:

$$(AB)^T = B^T A^T$$

Distributive property seems familiar... it's like the inverse rule.

 Sometimes a transpose is an inverse! (When?) orthonormal matrices...
draw an example with
rows v1, v2, v3.... noting
that dot(v1,v2)=0

Checkpoint

• Is the following matrix invertible?

$$\left[egin{array}{cccc} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{array}
ight]$$

- What's the inverse of:
 - RotateZ(3.5)*Translate(1,2,0)*Translate(-2,2,3)

R is a rotation matrix. Simplify the expression:

$$(R^T B)^{-1} (A^T R)^T (B^{-1} A)^{-1}$$