
L22. A trip through the sensor zoo

EECS568 Mobile Robotics: Methods and Principles	

Prof. Edwin Olson

Stereo
• Classic approach to stereo vision: matching pixel

patches between left and right.  
 
 
 
 

!

!

• Shortcoming: in low-detail areas, results are erratic.
(How would we enforce local consistency?)

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching.

Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to
noise and other differences (such as specular reflections and occlusions) that can occur between the left and
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data
(fewer discontinuities), but many of the details are missing.

Figure 4. Comparison of depth maps created with different block sizes.

Conclusion

Perceiving depth from multiple source images is a computationally expensive process. The block-matching
algorithm used here has generally good performance, and the confidence estimate can be used to effectively
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail.
While only simple block-matching approaches were outlined here, depth perception remains a much
researched topic.

MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344

50 100 150 200 250

50

100

150

200

250

Left Image Depth Map Confidence (expected error)

Left Image Depth Map (16x16) Depth Map (8x8)

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching.

Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to
noise and other differences (such as specular reflections and occlusions) that can occur between the left and
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data
(fewer discontinuities), but many of the details are missing.

Figure 4. Comparison of depth maps created with different block sizes.

Conclusion

Perceiving depth from multiple source images is a computationally expensive process. The block-matching
algorithm used here has generally good performance, and the confidence estimate can be used to effectively
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail.
While only simple block-matching approaches were outlined here, depth perception remains a much
researched topic.

MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344

50 100 150 200 250

50

100

150

200

250

Left Image Depth Map Confidence (expected error)

Left Image Depth Map (16x16) Depth Map (8x8)

Block Matching
• Exploit epipolar geometry	

‣ A pixel in the left camera corresponds to
a ray.	

‣ The image of a ray (in the right camera) is
a line	

‣ Thus, if we know the geometry of the
cameras, we only need to search for
matches along a line.	

!
• Matching procedure	

‣ Block size (5x5, 7x7, ...)	

‣ Comparison (SAD, SSE)	

!
• Sub-pixel matching	

‣ Fractional translation of reference image	

‣ Polynomial interpolation of full-pixel data

Stereo Vision: Graphical Model

• Label each pixel with a
disparity	

‣ Maximize agreement
between adjacent
pixels (“discontinuity
cost”)	

‣ Maximize agreement
between left and right
pixel (“data cost”)

Stereo MRFs
• Could approach as a least-squares problem	

‣ State: disparity at each node (relax to continuous
values)	

‣ Optimize product of function potentials (or equiv.
sum of log of potentials... “log likelihood”)	

!

• Very difficult local minimum	

‣ Least-squares solves a local quadratic problem. If
you’re not in the right basin, you won’t converge.	

‣ Least squares doesn’t work well.

Iterated Conditional Modes
• Simple idea:	

‣ Consider a single node at a time. (i.e., fix the values
of all other nodes)	

‣ Compute a new disparity for that node that
minimizes the log likelihood	

- Only a function of the neighboring factor
potentials... cheap!	

- Always reduces global error	

• Not much better than least squares--- still get stuck in
local minima.	

!

• Need a method that can “look ahead”, leaping out of
local minima	

‣ Consider two nodes a=0, b=0. Cost f(a,b) has local
minimum at 0,0, but global minimum at 1,1.

Loopy Belief Propagation
• Each node passes messages to its neighbors:	

‣ “If you take on value v, the cost could be as low as m(v).”	

‣ All possible values of v are evaluated in a best-case sense,
allowing the recipient to “teleport” to a new minimum

Cost	 of	 neighbors	
having	 different	 labels

P’s	 message	 to	 q	
specifies	 a	 “cost”	 for	
each	 value	 that	 q	

might	 take.

How	 much	 do	 our	
neighbors	 say	 it	 would	

cost	 for	 q	 to	 have	 value	 p

For	 every	 value	 fq,	
we’ll	 report	 the	 cost	
for	 the	 best-‐case	 fp.

pq

Cost	 of	 assigning	 fp	 to	
pixel	 p

a

b

c

Isn’t this fun?
• With an almost trivial model, we can destroy block

matching problems.	

‣ You can be competitive with Middlebury top 100 in a
couple days’ effort!

SSD+min-filter [scharstein szeliski], rank = 90 LBP [olson], rank* = 60

The disappointment
• MRF approaches are

too slow for robots	

‣ #1. [Wang/Zheng]:
20s	

‣ #2. [Yang/Nister]:
62s	

!

• Block matching is fast!	

‣ (unranked)
[Konolige], 10ms

Why is LBP slow?

Cost	 of	 neighbors	
having	 different	 labels

P’s	 message	 to	 q	
specifies	 a	 “cost”	 for	
each	 value	 that	 q	

might	 take.

How	 much	 do	 our	
neighbors	 say	 it	 would	

cost	 for	 q	 to	 have	 value	 p

For	 every	 value	 fq,	
we’ll	 report	 the	 cost	
for	 the	 best-‐case	 fp.

pq

for x=1:width
for y=1:height

for n=1:neighbors
for fq=1:labels

for fp=1:labels
...

Cost	 of	 assigning	 fp	 to	
pixel	 p

• Short answer: because computing messages is slow

a

b

c

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1
fp=2

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=2
fp=1 fp=3

• This is a min-convolution operation	

‣ Naive implementation is O(k2)	

• Efficient algorithms exist for special cases!	

‣ In linear case, forward-backwards algorithm O(k) 	

‣ Quadratic case also has a method... a bit messier, but still O(k)	

• Exact!

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution

Performance

0 200 400 600 800 1000
2

2.5

3

3.5

4

4.5

5

5.5
x 104

time (s)

en
er

gy

without minconv
with minconv

tsukuba (384 x 288), 16x subpixel, nlabels=256

Cool Trick #2: Multi-Grid

• Advantages:	

‣ Information spreads rapidly around graph	

• Disadvantages:	

‣ Have to come up with function potentials for other levels of the
image pyramid	

‣ Can lead to artifacts due to the arbitrary alignment of the grid cells

[Felzenszwalb/Huttenlocher 2004]

Figure 4: Illustration of two levels in the multi-grid method. Each node in level ℓ corresponds to a

2 × 2 block of nodes in level ℓ − 1.

where Dℓ and V ℓ are the data and discontinuity costs at level ℓ. There are a number of options for

how to define the costs at each level. We take an approach motivated by finite-element methods,

where the full set of image pixels corresponding to each block is taken into consideration.

First consider the data cost Dℓ
i,j . Intuitively assigning a label α to a block (i, j) at level ℓ is

equivalent to assigning that label to each pixel in the block, yielding a sum of the data costs for the

pixels in that block,

Dℓ
ij(α) =

ϵ−1
∑

u=0

ϵ−1
∑

v=0

Dϵi+u,ϵj+v(α).

The summation of negative log costs corresponds to taking a product of probabilities, thus the data

cost for an ϵ×ϵ block can be understood in terms of the probability of observing the corresponding

set of pixels given one particular label for all of them. A given block can prefer several labels,

because a cost is determined for each label of the block. For instance, if half the pixels prefer label

α and half prefer label β, then each of these labels will have low cost whereas other labels will

have high cost. Note that when computing the data costs it is not necessary to always sum over the

original grid Γ. Instead the calculation can be done more efficiently by summing over four data

costs at the next finer level.

Now consider the discontinuity costs at level ℓ. There is no discontinuity cost between pixels

inside a block, as every coarse labeling assigns the same label for such pixels. For each pair of

neighboring blocks there are ϵ pairs of pixels along their boundary. In measuring the difference

between labels for two neighboring blocks we use a finite difference approach, where the difference

15

Multi-resolution LBP

Cool Trick #3: Quantized labels

• Idea: Start iterating with
fewer labels, slowly increase
number of labels	

• Advantages:	

‣ Information spreads
rapidly around graph	

‣ No spatial blocking
artifacts	

• Disadvantage:	

‣ Not as fast as multi-grid

[Strom, Olson 2010*]

Quantized LBP

PrimeSense/Kinect
• Similar to a stereo camera in concept	

‣ But replace one camera with a projector	

‣ Second camera detects projected camera.	

!

• Why is this a good idea?	

‣ It works even when the environment is
devoid of distinguishing features (e.g. white
walls)	

‣ Under favorable conditions, very good results	

!

• What are the shortcomings?	

‣ Brightness of projector limits effectiveness at
long ranges and outdoors	

‣ Power consumption / stealth

graphics.stanford.edu

IR Laser

Diffraction 
grating

Speckle pattern
projected onto world.

Different for every
sensor!	

!
In focus at all ranges
due to coherent light

source.

RGB	

Camera

Depth  
Camera

IR bandpass 
filter

Disparity
Matching

Reference 	

image

Registration RGBD Image

reliable data on how Kinect works hard to find. Sources:
-- libfreenect
-- www.ros.org/wiki/kinect_calibratin/technical (good!)
-- iFixit teardown and PrimeSense Bill of Materials
-- PrimeSense patent filings (ugh)

Kinect Particulars
• Produces 640x480 RGBD Image	

‣ IR Camera is 1280x1024 @ 15Hz	

- Uses 2x2 binning to increase sensitivity and frame rate to 30Hz	

- Monochrome... 16 bit?	

• Matching	

‣ Calibration image stored in device at factory	

‣ Repeatedly “streamed” in sync with acquired IR image, fed into matching engine	

‣ Block based matching	

- 9x9 blocks	

- 1/8 pixel interpolation	

- 64 (?) pixel search range (Kinect returns 11 bit range values)	

• Registration	

‣ Corrects for parallax of RGB and depth sensor. (Could be eliminated by using a
single sensor with both RGB and IR pixels in an RGBI “Bayer” pattern).

Laser Range Finders

• SICK	

!

• Hokuyo	

!

• Velodyne	

!

• Ibeo

IR Beacons
• LEDs and photo diodes	

‣ Very cheap	

‣ Communications	

‣ (Crude) distance/proximity  

• Remote control demodulators	

‣ 40kHz, quite robust!	

‣ Integrated signal conditioning,
amplification, demodulation	

‣ Comms (~5kbps)	

‣ Proximity	

‣ Bearing (with baffle)	

‣ $0.63 each

IR Beacons

IR Range Finders

• Range measurement	

‣ $8
LED

PSD

LED

PSD

f, b: Properties of device
!
d: quantity (distance) we want to know
!
v: voltage (proportional to position) that we observe

LED

PSD

d

b

f

v

IR Range Finders

• Add in a few parameters
to fit non-idealities of
device, we get the
observation model:	

!

!

!

• Covariance model?

IR Range Finders

IR Range Finders

Northstar System
• Evolution Robotics	

‣ Indoor “GPS”	

!

!

!

!

• 10Hz update rate	

‣ Up to 20 “spots”

Ultrasound
• Time-of-flight of sound	

‣ Linear response	

‣ Fairly accurate.	

• Wide lobes (and side lobes!)	

‣ Can’t see details	

‣ Can be either good or bad... why?

40khz ($30-60), range 3m-6m 235khz ($140), range 1m

Radar
• 24GHz: Proximity detection  

• 75GHz: Millimeter-wave radar	

‣ Automotive cruise control radars (e.g. Delphi ACC)	

‣ Mechanically steered	

!

• Can get position and range rate!	

‣ Great help in data association

Images: Ebi Jose

Radar

Flash LIDAR

• SwissRanger SR4000	

• $9100	

!

• 174x144 pixels @ (up to) 54fps

real world evaluation (CMU)

manufacturer’s demo
image

IMU
• Coriolis effect	

‣ An object in a rotating coordinate frame
experiences a force proportional to its velocity	

‣ Idea: move a mass around a lot and see if there’s
a force acting on it.	

‣ Orientation is integral of angular motion… error
accumulates. 	

!

• Fiber-optic Gyro (FOG)	

‣ Shoot photons in a circle. If we’re rotating CCW,
the CW photons will complete a circuit faster
than those moving CCW.	

‣ Measure arrival times using interferometry.	

‣ More fiber = more circles = greater sensitivity.
(100m - 3km of fiber optic cabling!)

MEMs	 gyro:	 degrees	 per	 minute.	
Hard	 to	 calibrate.	
!
FOGs:	 0.1	 deg	 /	 hour	 (FOG200	
Northrop	 Grumman)	

IMU Performance
!

• Tactical grade	

‣ 1 deg/h, 1 mg 	

• Navigation grade	

‣ 0.01 deg/h, 25 ug	

• Strategic grade	

‣ (classified)	

!

• For comparison	

‣ Earth rotation rate (at pole)	

- 15 deg /h	

!

‣ ITAR Limits	

- 0.5 deg/h, 50 mg (?)

Coriolis Effect

Magnetometer/Compass
• Always a popular idea	

‣ Error doesn’t integrate over time.	

‣ Unfortunately, hard to make work reliably	

!

• Many sources of interference	

‣ Robot itself	

‣ Buildings	

‣ In fact, some have built maps of environments by using the local magnetic
flux as a landmark!	

!

• Gyro compassing	

‣ With an accurate enough gyro, you can measure the Earth spinning
beneath you (unless you’re at the equator!)

Even Cheaper Sensors
• Switches	

!

• IR break beam	

!

• Capacitive Field Proximity Sensors

Sonars at Sea
• Many specialized sensors

for under water:	

‣ Radio doesn’t propagate
very far	

‣ Murky: optical doesn’t
work very well.	

• Sound, on the other hand…	

‣ Travels much farther
than in air

DIDSON Sonar
• Underwater sonar “camera”	

‣ 96x500* pixels	

‣ Essentially 96 multi-echo, narrow
beam sonars that fire together	

‣ Plot return intensity vs. time for
each sonar	

• Restricted to shallow grazing angles

One sonar element: narrow horizontal FOV, wide vertical FOV.

DIDSON internals,
showing acoustic lenses

DIDSON Sonar

Manta mine: shallow water anti-landing mine. Uses
acoustic and magnetic triggering mechanism.

Doppler Velocity Log (DVL)

• Constantly measure Doppler
shift of “pings” as they reflect
off the ground beneath the
AUV.	

!

• Can measure velocity of vehicle
in x, y, z.

Long Baseline (LBL)
• Deploy beacons whose position is known in

advance	

!
• Robot periodically “pings” beacons	

‣ Beacons respond immediately	

‣ Robot measures RTT range measurement	

!
• Ranges can extend to kilometers	

!
• How many beacons?	

‣ One beacon: robot is on a sphere	

‣ Two beacons: robot is on a circle	

‣ Three beacons: robot is on a point	

‣ Assume known depth: one less beacon.

LBL SLAM

The end

