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Stereo
• Classic approach to stereo vision: matching pixel 

patches between left and right.  
 
 
 
 

!

!

• Shortcoming: in low-detail areas, results are erratic. 
(How would we enforce local consistency?)

 

Figure 3. Half-pel depth map on Renault Automobile Part using 16x16 block matching. 

 
Block size has a significant impact on the quality of the depth map. Larger blocks are more immune to 
noise and other differences (such as specular reflections and occlusions) that can occur between the left and 
right images. However, larger blocks cannot capture the fine depth detail that smaller blocks can. Figure 4 
demonstrates a view of the Pentagon with large and small blocks. The Larger blocks provide cleaner data 
(fewer discontinuities), but many of the details are missing. 
 

  

Figure 4. Comparison of  depth maps created with different block sizes. 

 
Conclusion 
 
Perceiving depth from multiple source images is a computationally expensive process. The block-matching 
algorithm used here has generally good performance, and the confidence estimate can be used to effectively 
mask out regions of high noise. Selection of block size is a trade-off between depth-map noise and detail. 
While only simple block-matching approaches were outlined here, depth perception remains a much 
researched topic. 
 
 
MatLab source code and raw images can be obtained from: http://www.ravenousbirds.com/eolson/6.344 
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Block Matching
• Exploit epipolar geometry	


‣ A pixel in the left camera corresponds to 
a ray.	


‣ The image of a ray (in the right camera) is 
a line	


‣ Thus, if we know the geometry of the 
cameras, we only need to search for 
matches along a line.	


!
• Matching procedure	


‣ Block size (5x5, 7x7, ...)	


‣ Comparison (SAD, SSE)	


!
• Sub-pixel matching	


‣ Fractional translation of reference image	


‣ Polynomial interpolation of full-pixel data



Stereo Vision: Graphical Model

• Label each pixel with a 
disparity	


‣ Maximize agreement 
between adjacent 
pixels (“discontinuity 
cost”)	


‣ Maximize agreement 
between left and right 
pixel (“data cost”)



Stereo MRFs
• Could approach as a least-squares problem	


‣ State: disparity at each node (relax to continuous 
values)	


‣ Optimize product of function potentials (or equiv. 
sum of log of potentials... “log likelihood”)	


!

• Very difficult local minimum	


‣ Least-squares solves a local quadratic problem. If 
you’re not in the right basin, you won’t converge.	


‣ Least squares doesn’t work well.



Iterated Conditional Modes
• Simple idea:	


‣ Consider a single node at a time. (i.e., fix the values 
of all other nodes)	


‣ Compute a new disparity for that node that 
minimizes the log likelihood	


- Only a function of the neighboring factor 
potentials... cheap!	


- Always reduces global error	


• Not much better than least squares--- still get stuck in 
local minima.	


!

• Need a method that can “look ahead”, leaping out of 
local minima	


‣ Consider two nodes a=0, b=0. Cost f(a,b) has local 
minimum at 0,0, but global minimum at 1,1. 



Loopy Belief Propagation
• Each node passes messages to its neighbors:	


‣ “If you take on value v, the cost could be as low as m(v).”	


‣ All possible values of v are evaluated in a best-case sense, 
allowing the recipient to “teleport” to a new minimum

Cost	  of	  neighbors	  
having	  different	  labels

P’s	  message	  to	  q	  
specifies	  a	  “cost”	  for	  
each	  value	  that	  q	  

might	  take.

How	  much	  do	  our	  
neighbors	  say	  it	  would	  

cost	  for	  q	  to	  have	  value	  p

For	  every	  value	  fq,	  
we’ll	  report	  the	  cost	  
for	  the	  best-‐case	  fp.

pq

Cost	  of	  assigning	  fp	  to	  
pixel	  p

a

b

c



Isn’t this fun?
• With an almost trivial model, we can destroy block 

matching problems.	


‣ You can be competitive with Middlebury top 100 in a 
couple days’ effort!

SSD+min-filter [scharstein szeliski], rank = 90 LBP [olson], rank* = 60



The disappointment
• MRF approaches are 

too slow for robots	


‣ #1. [Wang/Zheng]: 
20s	


‣ #2. [Yang/Nister]: 
62s	


!

• Block matching is fast!	


‣ (unranked) 
[Konolige], 10ms



Why is LBP slow?

Cost	  of	  neighbors	  
having	  different	  labels

P’s	  message	  to	  q	  
specifies	  a	  “cost”	  for	  
each	  value	  that	  q	  

might	  take.

How	  much	  do	  our	  
neighbors	  say	  it	  would	  

cost	  for	  q	  to	  have	  value	  p

For	  every	  value	  fq,	  
we’ll	  report	  the	  cost	  
for	  the	  best-‐case	  fp.

pq

for x=1:width 
for y=1:height 

for n=1:neighbors 
for fq=1:labels 

for fp=1:labels 
... 

Cost	  of	  assigning	  fp	  to	  
pixel	  p

• Short answer: because computing messages is slow

a

b

c



Cool trick #1: Min Convolution
[Felzenswalb/Huttenlocher 2004]

fp=1
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[Felzenswalb/Huttenlocher 2004]
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• This is a min-convolution operation	


‣ Naive implementation is O(k2)	


• Efficient algorithms exist for special cases!	


‣ In linear case, forward-backwards algorithm O(k) 	


‣ Quadratic case also has a method... a bit messier, but still O(k)	


• Exact!

fp=2
fp=1 fp=3

Cool trick #1: Min Convolution



Performance
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Cool Trick #2: Multi-Grid

• Advantages:	


‣ Information spreads rapidly around graph	


• Disadvantages:	


‣ Have to come up with function potentials for other levels of the 
image pyramid	


‣ Can lead to artifacts due to the arbitrary alignment of the grid cells

[Felzenszwalb/Huttenlocher 2004]

Figure 4: Illustration of two levels in the multi-grid method. Each node in level ℓ corresponds to a

2 × 2 block of nodes in level ℓ − 1.

where Dℓ and V ℓ are the data and discontinuity costs at level ℓ. There are a number of options for

how to define the costs at each level. We take an approach motivated by finite-element methods,

where the full set of image pixels corresponding to each block is taken into consideration.

First consider the data cost Dℓ
i,j . Intuitively assigning a label α to a block (i, j) at level ℓ is

equivalent to assigning that label to each pixel in the block, yielding a sum of the data costs for the

pixels in that block,

Dℓ
ij(α) =

ϵ−1
∑

u=0

ϵ−1
∑

v=0

Dϵi+u,ϵj+v(α).

The summation of negative log costs corresponds to taking a product of probabilities, thus the data

cost for an ϵ×ϵ block can be understood in terms of the probability of observing the corresponding

set of pixels given one particular label for all of them. A given block can prefer several labels,

because a cost is determined for each label of the block. For instance, if half the pixels prefer label

α and half prefer label β, then each of these labels will have low cost whereas other labels will

have high cost. Note that when computing the data costs it is not necessary to always sum over the

original grid Γ. Instead the calculation can be done more efficiently by summing over four data

costs at the next finer level.

Now consider the discontinuity costs at level ℓ. There is no discontinuity cost between pixels

inside a block, as every coarse labeling assigns the same label for such pixels. For each pair of

neighboring blocks there are ϵ pairs of pixels along their boundary. In measuring the difference

between labels for two neighboring blocks we use a finite difference approach, where the difference

15



Multi-resolution LBP



Cool Trick #3: Quantized labels

• Idea: Start iterating with 
fewer labels, slowly increase 
number of labels	


• Advantages:	


‣ Information spreads 
rapidly around graph	


‣ No spatial blocking 
artifacts	


• Disadvantage:	


‣ Not as fast as multi-grid

[Strom, Olson 2010*]



Quantized LBP



PrimeSense/Kinect
• Similar to a stereo camera in concept	


‣ But replace one camera with a projector	


‣ Second camera detects projected camera.	


!

• Why is this a good idea?	


‣ It works even when the environment is 
devoid of distinguishing features (e.g. white 
walls)	


‣ Under favorable conditions, very good results	


!

• What are the shortcomings?	


‣ Brightness of projector limits effectiveness at 
long ranges and outdoors	


‣ Power consumption / stealth

graphics.stanford.edu



IR Laser

Diffraction 
grating

Speckle pattern 
projected onto world. 

Different for every 
sensor!	


!
In focus at all ranges 
due to coherent light 

source.

RGB	

Camera

Depth  
Camera

IR bandpass 
filter

Disparity 
Matching

Reference 	

image

Registration RGBD Image

reliable data on how Kinect works hard to find. Sources: 
-- libfreenect 
-- www.ros.org/wiki/kinect_calibratin/technical  (good!) 
-- iFixit teardown and PrimeSense Bill of Materials 
-- PrimeSense patent filings (ugh)



Kinect Particulars
• Produces 640x480 RGBD Image	


‣ IR Camera is 1280x1024 @ 15Hz	


- Uses 2x2 binning to increase sensitivity and frame rate to 30Hz	


- Monochrome... 16 bit?	


• Matching	


‣ Calibration image stored in device at factory	


‣ Repeatedly “streamed” in sync with acquired IR image, fed into matching engine	


‣ Block based matching	


- 9x9 blocks	


- 1/8 pixel interpolation	


- 64 (?) pixel search range   (Kinect returns 11 bit range values)	


• Registration	


‣ Corrects for parallax of RGB and depth sensor. (Could be eliminated by using a 
single sensor with both RGB and IR pixels in an RGBI “Bayer” pattern).



Laser Range Finders

• SICK	


!

• Hokuyo	


!

• Velodyne	


!

• Ibeo



IR Beacons
• LEDs and photo diodes	


‣ Very cheap	


‣ Communications	


‣ (Crude) distance/proximity  

• Remote control demodulators	


‣ 40kHz, quite robust!	


‣ Integrated signal conditioning, 
amplification, demodulation	


‣ Comms (~5kbps)	


‣ Proximity	


‣ Bearing (with baffle)	


‣ $0.63 each



IR Beacons



IR Range Finders

• Range measurement	


‣ $8
LED 

PSD 

LED 

PSD 

f, b: Properties of device 
!
d: quantity (distance) we want to know 
!
v: voltage (proportional to position) that we observe 

LED 

PSD 

d 

b 

f 

v 



IR Range Finders

• Add in a few parameters 
to fit non-idealities of 
device, we get the 
observation model:	


!

!

!

• Covariance model?



IR Range Finders



IR Range Finders



Northstar System
• Evolution Robotics	


‣ Indoor “GPS”	


!

!

!

!

• 10Hz update rate	


‣ Up to 20 “spots”



Ultrasound
• Time-of-flight of sound	


‣ Linear response	


‣ Fairly accurate.	


• Wide lobes (and side lobes!)	


‣ Can’t see details	


‣ Can be either good or bad... why?

40khz ($30-60), range 3m-6m 235khz ($140), range 1m 



Radar
• 24GHz: Proximity detection  

• 75GHz: Millimeter-wave radar	


‣ Automotive cruise control radars (e.g. Delphi ACC)	


‣ Mechanically steered	


!

• Can get position and range rate!	


‣ Great help in data association

Images: Ebi Jose 



Radar



Flash LIDAR

• SwissRanger SR4000	


• $9100	


!

• 174x144 pixels @ (up to) 54fps

real world evaluation (CMU)

manufacturer’s demo 
image



IMU
• Coriolis effect	


‣ An object in a rotating coordinate frame 
experiences a force proportional to its velocity	


‣ Idea: move a mass around a lot and see if there’s 
a force acting on it.	


‣ Orientation is integral of angular motion… error 
accumulates. 	


!

• Fiber-optic Gyro (FOG)	


‣ Shoot photons in a circle. If we’re rotating CCW, 
the CW photons will complete a circuit faster 
than those moving CCW.	


‣ Measure arrival times using interferometry.	


‣ More fiber = more circles = greater sensitivity. 
(100m - 3km of fiber optic cabling!)

MEMs	  gyro:	  degrees	  per	  minute.	  
Hard	  to	  calibrate.	  
!
FOGs:	  0.1	  deg	  /	  hour	  (FOG200	  
Northrop	  Grumman)	  



IMU Performance
!

• Tactical grade	


‣ 1 deg/h, 1 mg 	


• Navigation grade	


‣ 0.01 deg/h, 25 ug	


• Strategic grade	


‣ (classified)	


!

• For comparison	


‣ Earth rotation rate (at pole)	


- 15 deg /h	


!

‣ ITAR Limits	


- 0.5 deg/h, 50 mg (?)



Coriolis Effect



Magnetometer/Compass
• Always a popular idea	


‣ Error doesn’t integrate over time.	


‣ Unfortunately, hard to make work reliably	


!

• Many sources of interference	


‣ Robot itself	


‣ Buildings	


‣ In fact, some have built maps of environments by using the local magnetic 
flux as a landmark!	


!

• Gyro compassing	


‣ With an accurate enough gyro, you can measure the Earth spinning 
beneath you (unless you’re at the equator!)



Even Cheaper Sensors
• Switches	


!

• IR break beam	


!

• Capacitive Field Proximity Sensors



Sonars at Sea
• Many specialized sensors 

for under water:	


‣ Radio doesn’t propagate 
very far	


‣ Murky: optical doesn’t 
work very well.	


• Sound, on the other hand…	


‣ Travels much farther 
than in air



DIDSON Sonar
• Underwater sonar “camera”	


‣ 96x500* pixels	


‣ Essentially 96 multi-echo, narrow 
beam sonars that fire together	


‣ Plot return intensity vs. time for 
each sonar	


• Restricted to shallow grazing angles

One sonar element: narrow horizontal FOV, wide vertical FOV. 

DIDSON internals, 
showing acoustic lenses 



DIDSON Sonar

Manta mine: shallow water anti-landing mine. Uses 
acoustic and magnetic triggering mechanism.



Doppler Velocity Log (DVL)

• Constantly measure Doppler 
shift of “pings” as they reflect 
off the ground beneath the 
AUV.	


!

• Can measure velocity of vehicle 
in x, y, z.



Long Baseline (LBL)
• Deploy beacons whose position is known in 

advance	


!
• Robot periodically “pings” beacons	


‣ Beacons respond immediately	


‣ Robot measures RTT  range measurement	


!
• Ranges can extend to kilometers	


!
• How many beacons?	


‣ One beacon: robot is on a sphere	


‣ Two beacons: robot is on a circle	


‣ Three beacons: robot is on a point	


‣ Assume known depth: one less beacon.



LBL SLAM



The end


