Essential infrastructure tools

- Message passing
 - Modularity
 - Encourages abstraction and decomposition of large problems into well-defined sub-problems
 - Software reuse
 - Fault tolerance
 - Creates viewports into system’s internal operation
- Logging, Playback
Example

- MIT DUC
 - 40 CPU cores
 - 22+ distinct modules
 - 60+ module instances
Modularization Example

- Laser driver
 - laser_t
 - object_position_t

- Red Ball Finder
 - laser_t
 - object_position_t

- Obstacle Tracker
 - laser_t
 - obstacles_t

- Game Pad Drive
 - motor_t

- Motion Planner
 - object_position_t
 - obstacles_t
 - motion_planner_t

- Path Follower
 - motion_plan_t
 - motor_t

- Splinter
 - motor_t
 - pose_t
LCM Type Definition Example

```c
struct object_position_t
{
    int64_t utime;
    double distance;  // distance to object
    double theta;     // direction to object
}
```

```python
objectpos = new object_position_t();
objectpos.utime = System.currentTimeMillis()*1000;
objectpos.distance = 0.3;
objectpos.theta = -0.12;
```
laser_t.lcm

struct laser_t
{
 int64_t utime;

 // range data (meters)
 int32_t nranges;
 float ranges[nranges];

 // intensity data, in sensor-specific units
 int32_t nintensities;
 float intensities[nintensities];

 // the angle (in radians) to the first point in nranges,
 // relative to the laser scanner's own coordinate frame.
 float rad0;

 // the number of radians between each successive sample
 float radstep;
}