
Why extract features 
from camera images?

• Motivation: understanding images is 
really hard!	


‣ Lots of data	


‣ Some parts of the image are 
“boring” 	


!

• Idea: extract “good” features	


‣ From 1M pixels to 100s of 
features	


‣ Can make features robust



Corner Detectors
• Intuitively, corners are a good feature.	


‣ Relatively easy to find	


‣ Trackable	


!

• But what is a corner?	


‣ We’re processing from bottom-up	


‣ No idea (yet) about objects	


• a corner != object corner	


!

• What isn’t a corner?	


‣ Uniform areas	


‣ Edges/lines



Image Gradients
• Idea: let’s look at gradients of a patch of pixels	


‣ Gradient at pixel a is (b-a, c-a)  
 
 

!

• Compute gradients for 2x2 area	


‣ We need 3x3 input…  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Image Gradients
• Are these good corners?	


‣ (What are the gradients?)



Image Gradients
• Are these good corners?	


‣ (What are the gradients?)



Good and Bad Corners

• Good Corners 
 
 
 

• Bad Corners 
 
 
 

• What do good/bad corners have in common?



Corners in gradient space

Good Corners Bad Corners



Harris Corner Detector

• Good Corners 

!

!

• Bad Corners 

!

!

• Idea: The “fatness” of the covariance ellipse of the gradient 
directions is a measure of “cornerness”	


‣ How do we compute this?



Computing corner response
• Compute S matrix	


‣ Covariance of the gradients 
 

!

• Compute eigen-values	


‣ Corner response = smallest eigen 
value	


‣ How bad (computationally) is this?	


• Identify pixels with “good” corner 
responses	


‣ Thresholding

• A handful of practical issues!	


!

• Noise in original image	


‣ Creates false positives	


‣ Apply low-pass filter first	


‣ Also improves isotropicity of 
response	


!

‣ Local maximum suppression	


!

• How big a patch to compute gradients 
over?





Actually, I lied.
• There are two very closely related corner detectors 

‣ Kanade-Tomasi	


• what we described (uses eigenvalues)  

‣ Harris	


• identical, except uses (bad) approximation of 
eigenvalue.

“Area of ellipse, minus a 
penalty for those that are 

highly eccentric.”



Difference of Gaussians
• Another way of looking at corner detectors	


‣ Look for areas with high frequency in both directions	


!

• What frequencies to look for?	


‣ We want a band pass	


• not too high (it’s noise!)	


• not too low (it’s not a corner!)	


!

• Filter an image with two different Gaussians	


‣ Each corresponds to a low-pass filter	


‣ Difference corresponds to a band-pass filter



`



Multiple Scales
• Corners of high-resolution images are often blurry or noisy at fine levels of 

detail	


!
!
!
!
!

• Idea: run Harris corner detector on down-sampled versions of the image	


‣ Extract corners, blur, decimate, repeat.	


!

• Idea:  repeatedly compute DoG, increasing both sigma1 and sigma2	


‣ Look for successively lower frequency corners	


‣ Better yet, once we’ve band-limited “enough”, we can decimate the image!

Corner indistinct at high resolution: no 
corner extracted 



Image Pyramids
• Look for features on multiple scales	


‣ Just repeat image processing algorithm 
on successively lower-resolution images	


‣ Must produce lower-resolution images	


!

• Avoiding aliasing requires low-pass filters	


‣ Ideal low-pass filter?	


‣ Don’t create new features when 
filtering	


• Avoid ringing!	


• Want a monotonic filter



Feature Tracking
• We often want to track (or match) features across 

two frames.	


‣ Which corners in image A match those in image 
B?	


‣ i.e., data association	


!

• Can we use more information?	


‣ Why not use the local appearance?



Image patch patching
• Consider the pixel patch around a feature	


‣ Sum of absolute/squared (SAD/SSE) differences/errors	


• How robust is this to small alignment errors/rotations/
changes in viewpoint/etc.?

These will probably match These probably won’t



Invariances
• Our goal: detect distinctive features, maximizing repeatability	


‣ Transform pixel patch into a space where a simple comparison (SAD/SSE) is 
effective.	


!
• Scale invariance	


‣ Robust to changes in distance	


!
• Rotation invariance	


‣ Robust to rotations of camera	


!
• Affine invariance	


‣ Robust to tilting of camera	


!
• Brightness invariance	


‣ Robust to minor changes in illumination



SIFT: Scale-Invariant Feature Transform

• David Lowe (Univ. British Columbia)	


!

• Probably the single most commonly used tool in 
computer vision	


‣ For better or for worse... often used “reflexively” even 
if it’s not a good choice!	


!

• Watch out! 	


‣ Patented, commercial use restricted



SIFT
• Detect interest points	


‣ Image pyramid using DoG “corners”	


‣ Output: corners and scale (which level of the pyramid?)  

• Output a “descriptor”	


‣ Consider pixel match around corner	


‣ Compute a histogram of the gradient directions	


‣ “Rotate” the histogram so that the dominant direction 
is first.



Sub-Octave Image Pyramids
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SIFT Descriptor
• Histogram of gradients gives good information about a pixel patch	


‣ But building just one histogram loses a lot of spatial information. 	


‣ Idea: For a given interest point, compute a set of histograms; output each.	


‣ Shift histograms so dominant direction is first in histogram ==> rotational 
invariance.  
 
 
 
 
 
 
 
 
 

• “Official” SIFT uses 16x16 pixel patches, 4x4 bins, 8 histogram buckets	


• How many degrees of freedom in SIFT descriptor?	


‣ # bins * # histogram buckets = 4*4*8 = 128



Matching SIFT Descriptors

• Each SIFT feature:	


‣  (x,y,scale)                    (ignore scale if you want scale invariance!)	


‣ descriptor[128]	


!
• Two descriptors can be compared using Euclidean distance…	


‣ Small distances = similar descriptors	


‣ What if same/similar feature appears more than once?  nearest neighbor may not be good 
enough	


!
• Common approach:	


‣ Suppose best match for Ai is Bj (with dij). 	


‣ Suppose next best match for Ai is Bk (with dik). 	


‣ Require dij < alpha dik.  (alpha typically 0.8).	


!
• “Marriage” constraint: Ai and Bj match only if Bj is the best feature for Ai and vice versa.







Histogram of Oriented Gradients

• What all the cool kids are doing these days.	


‣ Basically the same descriptor as in SIFT, without 
rotation invariance.	


‣ Often evaluated densely, used with templates, 
SVMs for object detection



Object recognition

• SIFT also used to build object recognition 
systems



Artificial Features



Applications

• Ground truthing	


• Recognizing robots	


• Commanding robots	


• Education	


‣ Often useful to 
bypass open-ended 
perception problems





Related Work
• ARToolkit	


‣ Widely used	


‣ Primitive binarization scheme => high failure rate in 
unstructured environments	


‣ Weak coding system	


‣ Freely available	


• ARTag (Fiala, 2005)	


‣ Seems to address many shortcomings in ARToolkit	


‣ Methods are not well-documented	


‣ Source code not available	


!
• Bokode (Mohan et al, 2009)	


• Fourier codes (Sattar et al, 2007)	


• Quick Response (QR) Tags



AprilTags
• Robust detection	


‣ Not based on threshold-based binarization scheme	


‣ Works better in unstructured environments	


‣ Accurate localization	


• Strong coding system	


‣ Low false positive rate	


• Parameterizable	


‣ Pick your own tag family

9h3 16h5 25h9



Detection Approach




