Why extract features from camera images?

• Motivation: understanding images is really hard!
 ‣ Lots of data
 ‣ Some parts of the image are “boring”

• Idea: extract “good” features
 ‣ From 1M pixels to 100s of features
 ‣ Can make features robust
Corner Detectors

• Intuitively, corners are a good feature.
 ‣ Relatively easy to find
 ‣ Trackable

• But what is a corner?
 ‣ We’re processing from bottom-up
 ‣ No idea (yet) about objects
 • a corner != object corner

• What isn’t a corner?
 ‣ Uniform areas
 ‣ Edges/lines
Image Gradients

• Idea: let’s look at gradients of a patch of pixels
 ▸ Gradient at pixel a is (b-a, c-a)

 a
 b
 c

• Compute gradients for 2x2 area
 ▸ We need 3x3 input…
Image Gradients

• Are these good corners?
 ▸ (What are the gradients?)

\[
\begin{array}{ccc}
 \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot \\
\end{array}
\hspace{2cm}
\begin{array}{ccc}
 & & \\
 & & \\
 \leftarrow & \cdot & \\
\end{array}
\]
Image Gradients

- Are these good corners?
 - (What are the gradients?)
Good and Bad Corners

• Good Corners

• Bad Corners

• What do good/bad corners have in common?
Corners in gradient space

Good Corners

Bad Corners
Harris Corner Detector

• Good Corners

• Bad Corners

• Idea: The “fatness” of the covariance ellipse of the gradient directions is a measure of “cornerness”
 ▸ How do we compute this?
Computing corner response

- Compute S matrix
 - Covariance of the gradients
 \[S = \sum_i g_i g_i^T \]

- Compute eigen-values
 - Corner response = \textit{smallest} eigen value
 - How bad (computationally) is this?

- Identify pixels with “good” corner responses
 - Thresholding

- A handful of practical issues!

- Noise in original image
 - Creates false positives
 - Apply low-pass filter \textit{first}
 - Also improves isotropicity of response

- Local maximum suppression

- How big a patch to compute gradients over?
Actually, I lied.

- There are two very closely related corner detectors

 - Kanade-Tomasi
 - what we described (uses eigenvalues)

 - Harris
 - identical, except uses (bad) approximation of eigenvalue.

\[
\begin{align*}
\text{trace}(S) &= \lambda_1 + \lambda_2 \\
\text{det}(S) &= \lambda_1 \lambda_2 \\
M &= \text{det}(S') - \kappa \text{trace}(S')^2
\end{align*}
\]

“Area of ellipse, minus a penalty for those that are highly eccentric.”
Difference of Gaussians

• Another way of looking at corner detectors
 ‣ Look for areas with high frequency in both directions

• What frequencies to look for?
 ‣ We want a band pass
 • not too high (it’s noise!)
 • not too low (it’s not a corner!)

• Filter an image with two different Gaussians
 ‣ Each corresponds to a low-pass filter
 ‣ Difference corresponds to a band-pass filter
Multiple Scales

• Corners of high-resolution images are often blurry or noisy at fine levels of detail

- Idea: run Harris corner detector on down-sampled versions of the image
 ▸ Extract corners, blur, decimate, repeat.

- Idea: repeatedly compute DoG, increasing both sigma1 and sigma2
 ▸ Look for successively lower frequency corners
 ▸ Better yet, once we’ve band-limited “enough”, we can decimate the image!
Image Pyramids

• Look for features on multiple scales
 ‣ Just repeat image processing algorithm on successively lower-resolution images
 ‣ Must produce lower-resolution images

• Avoiding aliasing requires low-pass filters
 ‣ Ideal low-pass filter?
 ‣ Don’t create new features when filtering
 • Avoid ringing!
 • Want a monotonic filter
Feature Tracking

- We often want to track (or match) features across two frames.
 - Which corners in image A match those in image B?
 - i.e., data association

- Can we use more information?
 - Why not use the local appearance?
Image patch patching

• Consider the pixel patch around a feature
 ▸ Sum of absolute/squared (SAD/SSE) differences/errors

• How robust is this to small alignment errors/rotations/changes in viewpoint/etc.?

These will probably match

These probably won’t
Invariances

- Our goal: detect distinctive features, maximizing repeatability
 - Transform pixel patch into a space where a simple comparison (SAD/SSE) is effective.

- Scale invariance
 - Robust to changes in distance

- Rotation invariance
 - Robust to rotations of camera

- Affine invariance
 - Robust to tilting of camera

- Brightness invariance
 - Robust to minor changes in illumination
SIFT: Scale-Invariant Feature Transform

- David Lowe (Univ. British Columbia)

- Probably the single most commonly used tool in computer vision
 - For better or for worse... often used “reflexively” even if it’s not a good choice!

- Watch out!
 - Patented, commercial use restricted
SIFT

- Detect interest points
 - Image pyramid using DoG "corners"
 - Output: corners and scale (which level of the pyramid?)

- Output a "descriptor"
 - Consider pixel match around corner
 - Compute a histogram of the gradient directions
 - "Rotate" the histogram so that the dominant direction is first.
SIFT Descriptor

- Histogram of gradients gives good information about a pixel patch
 - But building just one histogram loses a lot of spatial information.
 - Idea: For a given interest point, compute a set of histograms; output each.
 - Shift histograms so dominant direction is first in histogram ==> rotational invariance.

- “Official” SIFT uses 16x16 pixel patches, 4x4 bins, 8 histogram buckets
- How many degrees of freedom in SIFT descriptor?
 - # bins * # histogram buckets = 4*4*8 = 128
Matching SIFT Descriptors

• Each SIFT feature:
 ‣ (x,y,scale) (ignore scale if you want scale invariance!)
 ‣ descriptor[128]

• Two descriptors can be compared using Euclidean distance…
 ‣ Small distances = similar descriptors
 ‣ What if same/similar feature appears more than once? nearest neighbor may not be good enough

• Common approach:
 ‣ Suppose best match for Ai is Bj (with dij).
 ‣ Suppose next best match for Ai is Bk (with dik).
 ‣ Require dij < alpha dik. (alpha typically 0.8).

• “Marriage” constraint: Ai and Bj match only if Bj is the best feature for Ai and vice versa.
Histogram of Oriented Gradients

- What all the cool kids are doing these days.
 - Basically the same descriptor as in SIFT, without rotation invariance.
 - Often evaluated densely, used with templates, SVMs for object detection
Object recognition

- SIFT also used to build object recognition systems
Artificial Features
Applications

- Ground truthing
- Recognizing robots
- Commanding robots
- Education
 - Often useful to bypass open-ended perception problems
Related Work

- ARToolkit
 - Widely used
 - Primitive binarization scheme => high failure rate in unstructured environments
 - Weak coding system
 - Freely available
- ARTag (Fiala, 2005)
 - Seems to address many shortcomings in ARToolkit
 - Methods are not well-documented
 - Source code not available
- Bokode (Mohan et al, 2009)
- Fourier codes (Sattar et al, 2007)
- Quick Response (QR) Tags
AprilTags

- Robust detection
 - Not based on threshold-based binarization scheme
 - Works better in unstructured environments
 - Accurate localization
- Strong coding system
 - Low false positive rate
- Parameterizable
 - Pick your own tag family
Detection Approach