
Why extract features
from camera images?

• Motivation: understanding images is
really hard!	

‣ Lots of data	

‣ Some parts of the image are
“boring” 	

!

• Idea: extract “good” features	

‣ From 1M pixels to 100s of
features	

‣ Can make features robust

Corner Detectors
• Intuitively, corners are a good feature.	

‣ Relatively easy to find	

‣ Trackable	

!

• But what is a corner?	

‣ We’re processing from bottom-up	

‣ No idea (yet) about objects	

• a corner != object corner	

!

• What isn’t a corner?	

‣ Uniform areas	

‣ Edges/lines

Image Gradients
• Idea: let’s look at gradients of a patch of pixels	

‣ Gradient at pixel a is (b-a, c-a)  
 
 

!

• Compute gradients for 2x2 area	

‣ We need 3x3 input…  
 

a b
c

Image Gradients
• Are these good corners?	

‣ (What are the gradients?)

Image Gradients
• Are these good corners?	

‣ (What are the gradients?)

Good and Bad Corners

• Good Corners 
 
 
 

• Bad Corners 
 
 
 

• What do good/bad corners have in common?

Corners in gradient space

Good Corners Bad Corners

Harris Corner Detector

• Good Corners 

!

!

• Bad Corners 

!

!

• Idea: The “fatness” of the covariance ellipse of the gradient
directions is a measure of “cornerness”	

‣ How do we compute this?

Computing corner response
• Compute S matrix	

‣ Covariance of the gradients 
 

!

• Compute eigen-values	

‣ Corner response = smallest eigen
value	

‣ How bad (computationally) is this?	

• Identify pixels with “good” corner
responses	

‣ Thresholding

• A handful of practical issues!	

!

• Noise in original image	

‣ Creates false positives	

‣ Apply low-pass filter first	

‣ Also improves isotropicity of
response	

!

‣ Local maximum suppression	

!

• How big a patch to compute gradients
over?

Actually, I lied.
• There are two very closely related corner detectors 

‣ Kanade-Tomasi	

• what we described (uses eigenvalues)  

‣ Harris	

• identical, except uses (bad) approximation of
eigenvalue.

“Area of ellipse, minus a
penalty for those that are

highly eccentric.”

Difference of Gaussians
• Another way of looking at corner detectors	

‣ Look for areas with high frequency in both directions	

!

• What frequencies to look for?	

‣ We want a band pass	

• not too high (it’s noise!)	

• not too low (it’s not a corner!)	

!

• Filter an image with two different Gaussians	

‣ Each corresponds to a low-pass filter	

‣ Difference corresponds to a band-pass filter

`

Multiple Scales
• Corners of high-resolution images are often blurry or noisy at fine levels of

detail	

!
!
!
!
!

• Idea: run Harris corner detector on down-sampled versions of the image	

‣ Extract corners, blur, decimate, repeat.	

!

• Idea: repeatedly compute DoG, increasing both sigma1 and sigma2	

‣ Look for successively lower frequency corners	

‣ Better yet, once we’ve band-limited “enough”, we can decimate the image!

Corner indistinct at high resolution: no
corner extracted

Image Pyramids
• Look for features on multiple scales	

‣ Just repeat image processing algorithm
on successively lower-resolution images	

‣ Must produce lower-resolution images	

!

• Avoiding aliasing requires low-pass filters	

‣ Ideal low-pass filter?	

‣ Don’t create new features when
filtering	

• Avoid ringing!	

• Want a monotonic filter

Feature Tracking
• We often want to track (or match) features across

two frames.	

‣ Which corners in image A match those in image
B?	

‣ i.e., data association	

!

• Can we use more information?	

‣ Why not use the local appearance?

Image patch patching
• Consider the pixel patch around a feature	

‣ Sum of absolute/squared (SAD/SSE) differences/errors	

• How robust is this to small alignment errors/rotations/
changes in viewpoint/etc.?

These will probably match These probably won’t

Invariances
• Our goal: detect distinctive features, maximizing repeatability	

‣ Transform pixel patch into a space where a simple comparison (SAD/SSE) is
effective.	

!
• Scale invariance	

‣ Robust to changes in distance	

!
• Rotation invariance	

‣ Robust to rotations of camera	

!
• Affine invariance	

‣ Robust to tilting of camera	

!
• Brightness invariance	

‣ Robust to minor changes in illumination

SIFT: Scale-Invariant Feature Transform

• David Lowe (Univ. British Columbia)	

!

• Probably the single most commonly used tool in
computer vision	

‣ For better or for worse... often used “reflexively” even
if it’s not a good choice!	

!

• Watch out! 	

‣ Patented, commercial use restricted

SIFT
• Detect interest points	

‣ Image pyramid using DoG “corners”	

‣ Output: corners and scale (which level of the pyramid?)  

• Output a “descriptor”	

‣ Consider pixel match around corner	

‣ Compute a histogram of the gradient directions	

‣ “Rotate” the histogram so that the dominant direction
is first.

Sub-Octave Image Pyramids

LPF LPF

LPF LPF

LPF LPF

Down Sample

Down Sample

DoG DoG

DoG DoG

D D

SIFT Descriptor
• Histogram of gradients gives good information about a pixel patch	

‣ But building just one histogram loses a lot of spatial information. 	

‣ Idea: For a given interest point, compute a set of histograms; output each.	

‣ Shift histograms so dominant direction is first in histogram ==> rotational
invariance.  
 
 
 
 
 
 
 
 
 

• “Official” SIFT uses 16x16 pixel patches, 4x4 bins, 8 histogram buckets	

• How many degrees of freedom in SIFT descriptor?	

‣ # bins * # histogram buckets = 4*4*8 = 128

Matching SIFT Descriptors

• Each SIFT feature:	

‣ (x,y,scale) (ignore scale if you want scale invariance!)	

‣ descriptor[128]	

!
• Two descriptors can be compared using Euclidean distance…	

‣ Small distances = similar descriptors	

‣ What if same/similar feature appears more than once? nearest neighbor may not be good
enough	

!
• Common approach:	

‣ Suppose best match for Ai is Bj (with dij). 	

‣ Suppose next best match for Ai is Bk (with dik). 	

‣ Require dij < alpha dik. (alpha typically 0.8).	

!
• “Marriage” constraint: Ai and Bj match only if Bj is the best feature for Ai and vice versa.

Histogram of Oriented Gradients

• What all the cool kids are doing these days.	

‣ Basically the same descriptor as in SIFT, without
rotation invariance.	

‣ Often evaluated densely, used with templates,
SVMs for object detection

Object recognition

• SIFT also used to build object recognition
systems

Artificial Features

Applications

• Ground truthing	

• Recognizing robots	

• Commanding robots	

• Education	

‣ Often useful to
bypass open-ended
perception problems

Related Work
• ARToolkit	

‣ Widely used	

‣ Primitive binarization scheme => high failure rate in
unstructured environments	

‣ Weak coding system	

‣ Freely available	

• ARTag (Fiala, 2005)	

‣ Seems to address many shortcomings in ARToolkit	

‣ Methods are not well-documented	

‣ Source code not available	

!
• Bokode (Mohan et al, 2009)	

• Fourier codes (Sattar et al, 2007)	

• Quick Response (QR) Tags

AprilTags
• Robust detection	

‣ Not based on threshold-based binarization scheme	

‣ Works better in unstructured environments	

‣ Accurate localization	

• Strong coding system	

‣ Low false positive rate	

• Parameterizable	

‣ Pick your own tag family

9h3 16h5 25h9

Detection Approach

