Administrative

Midterm 1
Average = 41.5
Median = 42
Max = 58
Min = 18
Stdev = 8.1
Propositional Logic

- Advantages
 - Simple
 - Generic

- Disadvantage
 - All we have are propositions (facts)
 - Q: What else would we want?

PL for Vacuum World

- Let $D_i, i = 1, \ldots, n$, represent “room i is dirty”
- How to say the following?
 - All the rooms are clean
 - The dog is in some room
 - Any room that the dog has been in is dirty
 - All the upstairs rooms are clean, except the bathrooms
 - Rooms next to dirty rooms have a dusty smell
 - No two adjacent rooms are both dirty
 - The vacuum should visit every dirty room
 - When vacuuming a room, check whether any nearby rooms are dirty
PL can be Cumbersome

- For example, introducing NextTo required $O(n^2)$ new propositional symbols
- Inference exponential in number of propositional symbols
 - Infinite domains... forget about it
- Solution: put more structure on facts

First Order Logic

- Create a richer language by adding additional structure.

<table>
<thead>
<tr>
<th>Propositional Logic</th>
<th>First Order Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logically reason over propositions</td>
<td>Logically reason about objects, their properties, and their relationships.</td>
</tr>
<tr>
<td>A superset of PL.</td>
<td></td>
</tr>
</tbody>
</table>
First Order Logic

- **Objects**
 - Rooms, dogs, vacuums, wumpus rooms...

- **Predicates**
 - Tests a property of one or more objects
 - IsBreezy(x), AreAdjacent(x,y), isCleanerThan(x, y)
 - Value (true or false) can be evaluated given a model
 - With no arguments, equivalent to PL propositions.

- **Functions**
 - Names an object as it relates to other objects
 - MotherOf(x), RoomEastOf(x), ChildOf(x,y)
 - By themselves, do not form legal sentences; used along with predicates.
 - With no arguments, is a constant object.... E.g., “John”.

Predicates and Functions

- These look like “function calls” from Java or C, but are *quite* different!

- Defined implicitly, not explicitly.
 - Consider:
 - Male(John) ^ Male(Arnold)
 - AreBrothers(John, Arnold) v AreCousins(John, Arnold)
 - FatherOf(John) = FatherOf(Arnold)

- Relationships are built up from sentences of FOL, in which relationships may appear anywhere.
 - The properties are a matter of *inference*.
Syntax of First-Order Logic

Sentence \rightarrow AtomicSentence | \negSentence
| (Sentence Connective Sentence)
| Quantifier Variable, ... Sentence

AtomicSentence \rightarrow Predicate(Term,...) | Term = Term

Term \rightarrow Function(Term,...) | Constant | Variable

Connective \rightarrow \Rightarrow | \land | \lor | \Leftrightarrow

Quantifier \rightarrow \forall | \exists

Constant \rightarrow A | X_1 | Room1500EECS | ...

Variable \rightarrow a | x | s | ...

Predicate \rightarrow IsDirty | IsNextTo | IsComfy | ...

Function \rightarrow RoomOnRight | FurnitureInRoom | ...

Equality

- Special built-in predicate symbol
- $Term = Term$
 - An atomic sentence
 - $=$: a binary predicate, equivalence reln
 - Written using infix notation
- Similarly, \neq.
FOL Models

- Just like in PL, we can evaluate the *satisfiability* of a sentence *with respect to a model*.

- What was a model in PL?
 - Just an assignment of true/false to every proposition

- What is a FOL Model?

FOL Models

- A model must specify:
 - Which constants represent the same objects
 - IsCat(Felix) ^ IsDog(Fido)
 - Owner(Felix) = Robert
 - Owner(Fido) = Mr.Haroldson
 - HomeOf(Felix) = HomeOf(Fido)
 - Lives Alone(Robert)
 - Behavior of predicates
 - A truth table over all possible inputs
 - Behavior of functions
 - A map over all possible inputs
Making FOL even more powerful

- So far:
 - A neater way to write propositions
 - Captures object/relation structure, but still need to enumerate all cases
- Real FOL power comes from ability to quantify over objects using variables

Universal Quantifier

- “All the rooms are clean”
 - \(\forall x. \neg \text{Dirty}(x) \)
 - \(\forall x. \text{Room}(x) \Rightarrow \neg \text{Dirty}(x) \)

Equivalent to big conjunction, where \(x \) is replaced by every object in universe
Existential Quantifier

- “The dog is in some room”
 - $\exists x. \text{DogIn}(x)$
 - $\exists x. \text{Room}(x) \land \text{DogIn}(x)$

Existential quantifier

Equivalent to big disjunction, where x is replaced by every object in universe

Sentences with Variables

- $\forall x. \Phi(x)$
 - True in model iff $\Phi(x)$ true no matter what object x denotes

- $\forall x. \text{Room}(x) \Rightarrow \neg\text{Dirty}(x)$
 - True iff $\text{Room}(x) \Rightarrow \neg\text{Dirty}(x)$ is true for all objects x
 - Trivially true for any x not a room

- $\exists x. \text{Room}(x) \land \text{DogIn}(x)$
 - True iff there is some x s.t. x is a room with a dog in it

- Compare and contrast:
 - $\exists x. \text{Room}(x) \Rightarrow \text{DogIn}(x)$
 - $\forall x. \text{Room}(x) \land \neg\text{Dirty}(x)$
Sentences about Rock Stars’ Houses

- Rock stars are rich.
- Everybody has a home.
- Rich people have big homes.
- Bruce is a rock star.

Rock Star House KB

\[
\begin{align*}
\forall p. \text{IsRockStar}(p) &\Rightarrow \text{IsRich}(p) \\
\forall p. \text{IsPerson}(p) &\Rightarrow \exists h. \text{HomeOf}(h,p) \\
\forall p. \text{IsRich}(p) &\Rightarrow \exists h. \text{HomeOf}(h,p) \land \text{IsBig}(h) \\
\text{IsRockStar}(Bruce)
\end{align*}
\]
Rock Star House Model

IsRich

IsRockStar

Bruce

IsBig

Bruce’s Home

HomeOf