Assessing IDA*

- Q: What if we substitute A* for depth-first?
- Problem: too many iterations if there are many different f-values
- Alternatives: use more space
 - RBFS
 - SMA*
Beam Search

- Put a bound on the size of the fringe
- After inserting successors (in breadth-first order), sort by priority and truncate to fit bound
- Like shining a fixed-width “beam” into the search space
- Implications
 - Optimality?
 - Completeness?
 - Complexity?

Local Search

- Applicable when we don’t care about paths—just solution state.
- Avoid space problems entirely: maintain only one a finite number of solution candidates
 - Perhaps only one!
- Repeatedly tweak those candidates in the hopes of arriving at a solution.
 - How do we tweak the solutions?
Example: 8 Queens

Find an arrangement of queens such that no queen attacks another.

8 Queens Heuristic

$h = 1$ a local minimum $h = 17$

h: number of pairs of queens that attack each other
Local Beam Search

1. Randomly generate k initial states
2. Generate successors for each of them
3. If any successor is a goal, then return it and exit
4. Otherwise put all successors into queue, and sort queue.
5. Remove all but the k best nodes from the queue, and go to step 2

- How is this different than doing k random restarts?
- Can also have the stochastic variation, where the k nodes kept are chosen with some weighted probability based on heuristic value

Genetic Algorithm

- Parallel hill climbing
- Candidate successors generated by crossover and mutation
- Actual successors then selected based on fitness
GA Steps

- Initialize population of size \(N \)
- Repeat \(N \) times:
 - Randomly select two “parents” from population, with probability proportional to fitness
 - Construct “child” by crossing over parents
 - Apply mutation with small probability

Crossing Over

- Randomly select crossover point.
- Child is same as parent1 up to crossover point, parent2 after that.
Genetic Algorithm: Your turn!

- You’ll need a sheet of paper and a pencil
 - Write down four random numbers, x_1, x_2, x_3, and x_4.
 - Each number should be between $[1, 9]$.
 - Seriously. They need to be random!

- You are our initial population!

Genetic Algorithm: Fitness

- Compute your fitness:
 \[f = |6x_1^2x_2^2 + 18x_1^2x_4 - 70x_1^2 - 21x_2^2x_3 - 63x_3x_4 + 245x_3 + 24x_2^2 + 72x_4 - 280| \]

- (In our case, small fitnesses are good.)
Genetic Algorithm: Reproduction

- Who has low fitnesses?

- Sexual reproduction (without mutation) by crossing \((x_1,x_2)\) with \((x_3,x_4)\)

\[
\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
\end{array} \quad \begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
\end{array}
\rightarrow
\begin{array}{cccc}
 x_1 & x_2 & x_3 & x_4 \\
\end{array}
\]

parents

offspring

Changing the genetic representation

- Our fitness function can be factored like this:

\[
\left| (2x_1^2 - 7x_3 + 8)(3x_2^2 + 9x_4 - 35) \right|
\]

- What does this tell us about what our genetic representation should be?

\[
\begin{array}{cccc}
 x_1 & x_3 & x_2 & x_4 \\
\end{array} \quad \begin{array}{cccc}
 x_1 & x_3 & x_2 & x_4 \\
\end{array}
\rightarrow
\begin{array}{cccc}
 x_1 & x_3 & x_2 & x_4 \\
\end{array}
\]

parents

offspring
Adding Mutation

- We can randomly flip bits too...

Hill Climbing

- aka Gradient descent
- Requires heuristic h measuring quality of soln
- Algorithm:
 - Find all incremental modifications of candidate soln
 - Pick best one
 - Repeat
Example: Map Labeling

Example: Map Labeling
Example: Map Labeling

Example: Map Labeling
3SAT Example

\[(P_1\lor\neg P_2\lor P_3)\land(P_1\lor\neg P_2\lor\neg P_4)\land(P_1\lor\neg P_3\lor\neg P_4)\land \]
\[\neg(P_1\lor P_2\lor\neg P_3)\land(P_2\lor\neg P_3\lor\neg P_4)\land(P_2\lor\neg P_3\lor\neg P_4)\land \]
\[\neg(P_1\lor\neg P_3\lor P_4)\land(P_1\lor\neg P_3\lor P_4)\land(\neg P_2\lor\neg P_3\lor P_4)\land \]
\[\neg(P_1\lor P_2\lor P_3)\]

Q: What’s a good fitness function?

GSAT

procedure GSAT(\phi)
 for i := 1 to Max-tries
 T := random truth assignment
 for j := 1 to Max-flips
 if T satisfies \phi then return T
 else Poss-flips := set of vars that increase satisfiability most
 V := a random element of Poss-flips
 T := T with V's truth assignment flipped
 end
 end
return “no satisfying assignment found”
Hill Climbing Terrain

- Local maxima
- Plateaux
- Ridges

Hill-Climbing: 2-d Ridge

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Stochastic Variations

- Stochastic hill climbing
 - Select among positive steps at random
 - Probability proportional to steepness
- Random restarts
 - Repeat hill climbing from randomly chosen initial state
 - Return best local maximum found

No clear answer on how often to restart from scratch versus trying to “repair” a current candidate that’s stuck or making slow progress.

Simulated Annealing

- Hill climbing, but take worse-appearing steps with some probability
 - Generate random neighbor
 - If it is an improvement, accept;
 - else accept with probability < 1
 - probability decreases exponentially with the “badness” of the move, temperature
- Annealing: Decrease temperature gradually

- Stochastic Gradient Descent is similar
 - Useful for optimization with many simultaneous “soft” constraints
 - Temperature decreases as $1/T$
 - Actually takes a long time for the temperature to get really small.
GA: Discussion

- Appealing analogy to natural selection with sexual reproduction

- Does it work?
 - Hard to characterize in general
 - Depends crucially on string rep’n of state
 - Intuition: GA maintains good “building blocks” in population
 - Not generally better than simpler stochastic local search methods

Assessing Local Search

- Key advantages
 - Very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces where other systematic approaches are unsuitable

- Usually incomplete and not optimal
Adversarial Search

- Next time...