First Order Logic: Conversion to CNF

- 1. Eliminate biconditionals and implications:
 - Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 - Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
- 2. Move \neg inwards:
 - $\bullet \ \neg(\forall x \ p) \equiv \exists x \ \neg p,$
 - $\neg(\exists x \ p) \equiv \forall x \ \neg p$,
 - $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$,
 - $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$,
 - $\bullet \ \neg \neg \alpha \equiv \alpha.$
- 3. Standardize variables apart by renaming them: each quantifier should use a different variable.
- 4. Skolemize: each existential variable is replaced by a *Skolem constant* or *Skolem function* of the enclosing universally quantified variables.
 - For instance, $\exists x \, Rich(x)$ becomes Rich(G1) where G1 is a new Skolem constant.
 - "Everyone has a heart" $\forall x \; Person(x) \Rightarrow \exists y \; Heart(y) \land Has(x,y)$ becomes $\forall x \; Person(x) \Rightarrow Heart(H(x)) \land Has(x,H(x))$, where H is a new symbol (Skolem function).
- 5. Drop universal quantifiers
 - For instance, $\forall x \ Person(x)$ becomes Person(x).
- 6. Distribute \land over \lor :
 - $(\alpha \wedge \beta) \vee \gamma \equiv (\alpha \vee \gamma) \wedge (\beta \vee \gamma)$.