Why (when?) does learning work?

- What can we say about generalization performance for particular learning methods or problems?
- Guarantees for classification of specific examples not possible, so what is?
 - Relative guarantees (e.g., Adaboost)
 - Bounds on \(\text{expected} \) performance
Hypothesis Accuracy

- Assume examples generated according to probability distribution D.
- Error of hypothesis h (our model):
 \[\text{error}(h) \equiv \Pr_D(h(x) \neq f(x)) \]
- Hypothesis h is approximately correct iff:
 \[\text{error}(h) \leq \epsilon \]

PAC Learning

- Idea: As we see more examples, set of consistent hypotheses shrinks.
- Suppose h_{bad} is not approximately correct.
 - $\Pr(h_{bad} \text{ consistent with random example}) \leq 1 - \epsilon$.
 - $\Pr(h_{bad} \text{ consistent with } m \text{ examples}) \leq (1 - \epsilon)^m$.
- Let be H_{bad} all bad hypotheses.
 \[\Pr(H_{bad} \text{ contains a consistent hypothesis}) \leq |H_{bad}|(1 - \epsilon)^m \leq |H|(1 - \epsilon)^m \]
- If this probability $< \delta$, the hypothesis is probably approximately correct (PAC).
Sample Complexity

Pr(H_{bad} contains a consistent hypothesis) \leq |H_{bad}|(1-\varepsilon)^m \leq |H|(1-\varepsilon)^m

- Can ensure PAC learning by observing enough examples:

 \[m \geq \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right) \]

 \[\text{epsilon: error rate of hypothesis} \]

 \[\text{delta: probability that a bad hypothesis is consistent with training examples} \]

- This sample complexity depends strongly on size of hypothesis space.

Mushroom Example

- How many hypotheses are consistent with the 12 examples we’ve seen?
- How many of those are exactly right?
- How many are approximately right?
 - Let’s say 75% correct
- If we had seen only 8 examples, how many consistent hypotheses?
- How many of those exactly right?
- How many are approximately right?
 - Again 75% correct...

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Size</th>
<th>Color</th>
<th>OnPizza</th>
<th>Edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>NO</td>
</tr>
</tbody>
</table>
Validation

- How do we numerically evaluate the performance of our learning algorithm?

Overfitting

- We don’t initially know which attributes are going to be relevant, and which irrelevant.
 - Chances are, some might be irrelevant.

- Overfitting arises when patterns are seen that turn out to be irrelevant.
 - Example in Mushroom data: whether the mushroom is picked on a Tuesday.

- Examples in everyday life?

- Solutions
 - Significance test: more complex examples must be “sufficiently” compelling.
 - Cross validation
Performance Measurement

How do we know that $h \approx f$?

- Use theorems of computational/statistical learning theory
- Try h on a new test set of examples
 - (use same distribution over example space as training set)

Learning curve:
% correct on test set as a function of training set size

Performance Measurement

- What would constitute a good set of training examples?
 - Can we just use the first n training examples from the table?
 - Stationarity is critical
- Can performance ever get worse with more examples?
Validation

- Data is precious
 - Can’t always obtain new test datasets
 - Want largest possible training and test datasets
 - How can we make maximum use of our datasets?

- Simple method: Collect N samples
 - Use M for training
 - Use (N-M) for testing.

Cross Validation

- Suppose we have N samples
 - Train on first N/2 samples
 - Test on last N/2 samples

- Can we also:
 - Train on last N/2 samples
 - Test on first N/2 samples
 - Average test error from both runs!
 - 2-fold cross validation
K-fold Cross-validation

- Divide dataset into K sets
- for n=1 to K
 - Train on all datasets except n
 - Test on dataset n
 - Compute average test error over all K runs

- If K=number of samples
 - Leave-one-out cross-validation