PS1 due Thursday!
Last Time: Uniformed Search

- **General-Purpose**
 - Require only the problem definition itself:
 - $state_0$
 - $successors(state)$
 - $is\text{-}goal(state)$
 - $cost(path)$

- **Powerful**
 - Several Complete and Optimal algorithms to choose from!

General Tree Search

```
function Tree-search(problem) returns a solution, or failure

fringe = new Queue();
fringe.put(problem.initialState)

loop do
  if fringe.isEmpty() then return failure
  node ← fringe.get()
  if problem.isGoalState(node)
    then return node;
  fringe.putAll(problem.expand(node))
```

Which node in the fringe does `get()` return?
Analysis Summary

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time complexity</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{C^*+1}))</td>
<td>(O(b^m))</td>
<td>(O(b^L))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>Space complexity</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{C^*+1}))</td>
<td>(O(bm))</td>
<td>(O(bL))</td>
<td>(O(bd))</td>
</tr>
</tbody>
</table>

- Linear in depth!
- Exponential in depth!

Uninformed Search

- All we have is:
 - problem = \{state_0, is-goal(), cost(), successors() \}

- We have no idea how well we’re doing until we suddenly find a goal!
Informed Search

- We still need to know the problem
 - problem = \{ state_0, is-goal(), cost(), successors() \}

- We get some additional information at each node
 - “Hot” or “Cold”
 - Which states are better than others?
 - Information about distance to goal

 - Formulate as a real-valued metric \(f(node) \).

Informed Search

- Exploit additional information of \(f() \) such that:
 - We find the goal faster when \(f() \) is accurate

- With the right algorithm:
 - We still (eventually) find a goal when \(f() \) is wrong
 - We can find the \textit{optimal} goal if \(f() \) is only wrong in certain ways!
 - Generally easy to satisfy conditions too!
Best-First Search

- It’s really just TreeSearch again, except we allow more types of Queue-Get functions

- For each node, define an *evaluation function* \(f(node) \).
 - Having \(f() \) is how we “inform” the search!
 - Queue-Get: Expand the node with the smallest value of \(f() \)

- Watch out for “BFS”
 - Breadth-first search or best-first search?

Greedy Search

- Simple informed search with \(f() = \text{cost-to-go}(n) \)

- Complete?

- Optimal?
Greedy Search: Example

- Queue-Get: returns the node with minimum \(f(n) = \text{cost-to-go}(n) \)
- Assume we avoid repeated states.

A (8)
Expand A:
AB (7)
AI (9)
Expand AB:
ABC (6)
AI (9)
Expand ABC:
ABCD (5)
AI (9)
Expand ABCD:
ABCDE (4)
AI (9)
Expand ABCDE:
dead end
AI (9)
Expand AI:
AI*

A*

It’s a Best-First Search!

Thrilling. Yet Another TreeSearch. What’s Queue-Get this time?

Glad you asked! Queue-Get returns the node with the minimum value of:

\[f(n) = \text{cost-so-far}(n) + h(n), \]
where \(h(n) \) has some special properties.

What’s it good for?
A*:

- Provided the heuristic is *admissible*:
 - A* is complete
 - A* is optimal
 - A* is *optimally efficient*

Optimally Efficient?

No algorithm can expand fewer nodes than A* and still be guaranteed to find the optimal answer.

A*: Admissible heuristics

- Admissible:

h(n) \(\leq\) the minimum achievable cost from n to the goal.
**A*: Proof of Optimality

- **Strategy:**
 - Let C* be cost of optimal solution
 - Show that a node on the path to the optimal solution will always be selected for expansion before a sub-optimal goal node.
 - Eventually, that node will be the goal node and we’ll be done.

- **Proof**
 - Suppose a suboptimal goal G’ in a node on fringe
 - G’ is suboptimal \(\iff g(G’) > C^*\)
 - \(f(G’)=g(G’)+h(G’)\)
 - \(f(G’) > C^*\).
 - There must be a node \(n\) on fringe that is on optimal path, and because
 - \(h(n)\) can’t overestimate, \(f(n) < C^*\)
 - Since \(f(n) < f(G’)\), we’ll expand \(n\) before \(G’\).

Admissible Heuristics

- **Objectives:**
 1. Accurate estimate of distance to goal
 2. Never overestimate (admissible)
 3. Easy to compute

- **Approaches:**
 - Just think of something
 - Relax constraints
 - Learn from experience
A*: Example

What’s a good heuristic?
A* Example: Solution

1: \{AA(265)\}

3: \{ AA-D(269), AA-T(279), AA-K(470) \}

7: \{ AA-T(279), AA-D-AA(341), AA-D-F(391), AA-D-N(451), AA-D-L(456), AA-K(470) \}

Your turn!

- 1. Which algorithm do we get if we do Best First Search (BFS) with:
 - A. \(f() = \text{num-actions}(\text{node}) \)
 - B. \(f() = \text{cost-so-far}(\text{node}) \)
 - C. \(f() = \text{cost-to-go}(\text{node}) \)
 - D. \(f() = \text{cost-so-far}(\text{node}) + \text{cost-to-go}(\text{node}) \)
 - E. \(f() = \text{time-in-fringe}(\text{node}) \)
 - F. \(f() = -\text{time-in-fringe}(\text{node}) \)

- 2. Where will BFS “back up” to when it gets stuck?

- 3. What is BFS’s CPU runtime?

- 4. What is BFS’s memory usage?

- 5. Is BFS Complete? Optimal?
Graph Search and A*

- Tree search A* has same problem as other tree searches... (what problem is it?)
 - Can re-expand same states many times over.

- Graph Search was the answer...
 - Don’t add paths to the fringe when we already know how to get to that state.

Graph Search A*

- Use GraphSearch/A*

Sub-optimal!
(why did this happen?)
A stronger heuristic: Consistency

- **Admissibility**
 - $h(n) \leq \text{true cost from } n \text{ to goal}$

- **Consistency (Monotonicity)**
 - $h(n) \leq c(n, n') + h(n')$
 - (Implies admissibility. Why?)
 - $h(n) \leq c(n, n') + [c(n', n'') + h(n'')]$

- **A* optimal if:**
 - Tree: $h()$ is admissible
 - Graph search: $h()$ is consistent

Consistency

- **Where is this function non-consistent?**
 - **Consistency property:** $h(n) \leq c(n, a, n') + h(n')$
Consistency and Tree Search

- Why *don’t* we need consistency for tree search?

Constructing Admissible Heuristics

- Relax constraints
- Sub-problems
- Pattern databases
Generating Heuristics by Relaxation

Calculate exact distance for relaxed version of problem

Allow tile to be moved to any location
h1: #misplaced tiles

Allow move to adjacent square even if occupied
h2: Manhattan distance

Generating heuristics with sub-problems

- $h_3(n) =$ How many moves to get tiles 1-4 into the correct position?

- $h_4(n) =$ How many moves to get tiles 7-8 into the correct position?
Pattern Database

- Stanford Parking Planner
 - Precompute distance to adjacent cells assuming no obstacles

Admissible Heuristics

- Which heuristic is better?
 - The one that produces the larger values.

- Are there admissible h_1, h_2 such that $h_1(n_i) > h_2(n_i)$ and $h_1(n_j) < h_2(n_j)$?

- Domination
 - $h_1(n) \geq h_2(n)$ for all n.
Combining Multiple Heuristics

- Suppose we have multiple admissible heuristics. What is the optimal combination of them?
- What if the heuristics are disjoint? I.e., progress on one heuristic can not affect progress of another heuristic

Inadmissible Heuristics

- Learning heuristics based on features
 - $H(n) = Ax(n) + By(n)$
 - Where A,B are parameters fit to observed data.
- Are these useful?
A*: Not a panacea

- Avoiding exponential search size requires heuristic error to grow as \(\log(\text{cost}) \).
- This is hard to do: error often proportional to cost.
 - Consider: Straight-line distance?

- Otherwise, memory/CPU are \(O(b^n) \)
 - Memory will generally be the limiting problem
 - Sound familiar?
Recursive Best First Search (RBFS)

- RBFS is a scheme to reduce the memory requirements.

- Each node knows the f() of the best alternative path from one of its ancestors.
 - If the current f() value exceeds this limit, we unwind back to the common ancestor, then re-expands the tree down the alternate path.

- Two (or more) paths can wrestle control back and forth:
 - Constantly re-expanding nodes

- Space:
 - $O(d)$

IDA*

- IDA* is a scheme to reduce the memory requirements.

- Virtually identical to IDS:
 - Instead of Depth-Limited Search, use f()-limited search
 - Upon failure, f()-limit is increased to the lowest f() value that was previously pruned.

- Time:
 - $O(b^{C^*/e})$

- Space:
 - $O(bd)$
SMA*

- RBFS and IDA* suffer from using too little memory.

- Idea: Remember as much of the search tree as we can. (Delay the onset of thrashing as long as we can!)
 - 1. When the queue is not too big
 - Expand the leaf in the search tree with the minimum f()
 - 2. When memory runs out:
 - Find the leaf in the search tree whose f() is the worst and remove it.
 - Back up its f() to its parent. Note that the parent might now become a leaf

Next time

- Local Search