Classification and Regression

- We want to learn functions of the form:
 - $y = f(x)$

- Y is discrete valued:
 - Classification

- Y is continuous
 - Regression

- X can be one or more continuous or discrete values.
Classification

- Estimate a discrete-valued quantity in terms of a number of features
 - Example: Car or Motorcycle?
 - Features:
 - Size in pixels
 - Aspect ratio
 - Average color
 - ...

Regression

- Estimate a continuous-valued quantity in terms of a number of features
- Example: APPL stock price
 - Features:
 - Number of news articles about upcoming products
 - Last quarter’s revenue
 - Cash on hand
 - Whether Steve Jobs is CEO

- Example: Movie rating predictions
 - Features:
 - How much did the user like other movies?
 - How much did other users like this movie?
Basics

- Training dataset
 - Data used to learn our model

- Test dataset
 - Data used to see how well we’ve learned f(x)
 - Why is this separate from training data?

Classification: roadmap

- kNN
- Decision Trees
- Boosting
- SVM
- Neural networks
kNN

Nearest Neighbor

- Given feature vector \mathbf{x}, estimate y based on previously seen examples close to \mathbf{x}
- K-Nearest Neighbors
 - Find k closest examples
 - Majority vote
 - Special data structures make nearest-neighbor lookups relatively fast. (How would you do it?)
- Very simple, effective, little parameter tuning
 - A good “first try” method
Nearest Neighbor

- Example: Predict MPG given:
 - # of cylinders
 - car mass

 Distance = \((c_i - c_j)^2 + (m_i - m_j)^2\)

- What happens?
 - # of cylinders doesn’t matter much at all!
 - Scaling matters!
 - Normalization

Decision Trees
Decision Trees

- Classify attribute vectors into two or more classes
- Boolean case: learn goal predicate

Which boolean functions can we learn?

Mushroom Decision Tree

(Large ∧ ¬Yellow) ∨ (¬Large ∧ Spotted ∧ OnPizza)

from Ginsberg, Essentials of AI
Building Decision Trees

- Given set of examples, derive consistent decision tree
- Idea: just include path for each positive example
 - What’s wrong with this?
 - How can we do better?

Ockham’s Razor

“Pluralitas non est ponenda sine neccesitate” —William of Ockham, 14th century

- Plurality should not be posited without necessity
- Prefer the simplest consistent hypothesis
- Allows for generalization
Building Decision Tree

- **Bad news**
 - Finding smallest possible tree intractable

- **Greedy approach**
 - Starting from root (containing all examples)
 - Until stuck:
 - Pick a node in which not all examples are the same
 - (And at least one attribute is left)
 - Pick attribute most effective in distinguishing among examples
 - Split node using attribute.

Mushroom Instances

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Size</th>
<th>Color</th>
<th>OnPizza</th>
<th>Edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>NO</td>
</tr>
</tbody>
</table>
Choose-Attribute in DTL

Measuring Information Value

- Consider binary event with probability p.
- Finding out event resolves uncertainty.
 - $p = 1$ or 0. Already knew it, no new information.
 - $p = 1/2$. Maximal information from event: 1 bit.
- General formula:
 $$I(q) = -q \log_2 q - (1-q) \log_2 (1-q)$$
Information Gain

- Set of p positive examples, n negative.
- Information value, $I(p/[p+n])$.
- After observing binary attribute, average information is:

$$\frac{p_i + n_i}{p+n} I(\frac{p_i}{[p_i + n_i]}) + \frac{p_f + n_f}{p+n} I(\frac{p_f}{[p_f + n_f]})$$

Information gain is difference between information before and after observing attribute.

Choose-Attribute in DTL

- Size? (Large, Large)
- Pattern? (Spotted, Spotted)
- Color? (Yellow, Yellow)
- Pizza? (OnPizza, OnPizza)
Calculating Initial Information

Initially:

\[I(5/12) = -\frac{5}{12} \log_2 (5/12) - (7/12) \log_2 (7/12) \]
\[= -\frac{5}{12}(-1.263) - \frac{7}{12}(-0.778) \]
\[= .980 \]

Fair amount of uncertainty!

Attribute Information Calculations

After observing “Large” (remainder):

\[(6/12) I(4/6) + (6/12) I(1/6) = .784 \]
So Gain(Large) = .980 – .784 = .196

After observing “Spotted” (remainder):

\[(6/12) I(3/6) + (6/12) I(2/6) = .959 \]
So Gain(Spotted) = .980 – .959 = .021

After observing “Yellow” (remainder):

\[(4/12) I(0) + (8/12) I(5/8) = .636 \]
So Gain(Yellow) = .980 - .636 = .354

After observing “OnPizza” (remainder):

Same as Spotted.

So, split on Yellow: positive = NO, negative is 8 cases.
Remaining Mushroom Instances

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Size</th>
<th>Color</th>
<th>OnPizza</th>
<th>Edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Large</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>Spotted</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>NY</td>
<td>Yes</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Large</td>
<td>NY</td>
<td>No</td>
<td>YES</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>Yellow</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>No Spots</td>
<td>Small</td>
<td>NY</td>
<td>No</td>
<td>NO</td>
</tr>
</tbody>
</table>

Induced Tree

\[
(\neg \text{Yellow} \land \text{Large}) \lor (\neg \text{Yellow} \land \neg \text{Large} \land \text{Spotted} \land \text{OnPizza})
\]
Boosting

Ensemble Learning

- Combine predictions from multiple hypotheses
 - May be produced by different learning algorithms
 - Or variations of same algorithm
- To the extent errors are independent, hypotheses are complementary
- Combination more likely to be right than any individual hypothesis
Ensemble Learning

- Combine predictions from multiple hypotheses
 - May be produced by different learning algorithms
 - Or variations of same algorithm
- To the extent errors are independent, hypotheses are complementary
- Combination more likely to be right than any individual hypothesis

Simple Majority Voting

- Build M simple classifiers (e.g. M=5)
 - Suppose (optimistically) that each has an error rate P.
 - Ensemble is wrong only when three or more classifiers are wrong:
 \[P_M = \binom{5}{3} P^3 (1-P)^2 + \binom{5}{4} P^4 (1-P) + P^5 \]
 - Suppose P = 0.1. Estimate \(P_M \).
- Why is independence assumption optimistic?
Boosting

- Requires: learning method operating over weighted training set.
 - Method attempts to minimize weighted error
 - E.g., decision stumps: decision trees with only one attribute test

- Approach
 - Modify weights over time to reward good performance over “difficult” instances
 - Combine hypotheses derived in each iteration

Boosting Algorithm

- $W(x)$ is the distribution of weights over the N training instances $\sum W(x_i) = 1$
- Initially assign uniform weights $W_0(x) = 1/N$ for all x, step $k=0$
- At each iteration k:
 - Find hypothesis $H_k(x)$ with minimum error ε_k using weights $W_k(x)$
 - Compute $a_k = \frac{1}{2} \log \frac{1 - e_k}{e_k}$ — What does a_k look like?
 - Update weights of every training example
 - Correctly labeled points: $W_{k+1} = W_k \cdot \exp(-a_k)$
 - Incorrectly labeled points: $W_{k+1} = W_k \cdot \exp(a_k)$
 - $H_{FINAL}(x) = \text{sign} \left[\sum a_i H_i(x) \right]$
AdaBoost (Example)

Original Training set: Equal weights for all training samples

Can you find a reasonable decision stump?

Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

AdaBoost (Example)

ROUND 1

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[\varepsilon_1 = \sum_{n=\text{incorrect}} w_n \]
\[\alpha_1 = \frac{1}{2} \ln \frac{1 - \varepsilon_1}{\varepsilon_1} = \frac{1}{2} \ln \frac{3}{7} = .42 \]

\[w'_n = C \cdot w_{\text{normalizer}} \]
\[w_{\text{normalizer}} = (1.091) \cdot (1.654653) = .0714 \]
\[w_{\text{normalizer}} = (1.091) \cdot (1.527525) = .1667 \]
\[C_{\text{normalizer}} = \frac{1}{\sum w'_n} = 1.091 \]
AdaBoost (Example) ROUND 2

\[\epsilon_2 = \sum_{\text{incorrect}} w(\text{incorrect}) = 0.21\]
\[\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_2}{\epsilon_2} \right) = \frac{1}{2} \ln \left(\frac{0.79}{0.21} \right) = 0.65\]

AdaBoost (Example) ROUND 3

\[\epsilon_3 = 0.14\]
\[\alpha_3 = 0.92\]
AdaBoost (Example)

$$H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92)$$

Mushroom Instances

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Size</th>
<th>Color</th>
<th>OnPizza</th>
<th>Edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>N</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Y</td>
<td>N</td>
<td>No</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>Y</td>
<td>N</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>N</td>
<td>Y</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>Y</td>
<td>Y</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>No</td>
</tr>
</tbody>
</table>
Boosting on Features

Computing Weighting

Hypothesis is: Yellow=Not edible, ~Yellow=Edible

\[\varepsilon_1 = \sum w(\text{incorrect}) = \frac{1}{12} + \frac{1}{12} + \frac{1}{12} = \frac{1}{4} \]

\[\alpha_1 = \frac{1}{2} \ln(3/1) = 0.55 \]

\[w'(\text{correct}) = Cn(1/12)(e^{-0.55}) = 0.048Cn \]

\[w'(\text{incorrect}) = Cn(1/12)(e^{0.55}) = 0.144Cn \]

Cn normalizes so it is 1.1574

\[w'(\text{correct}) = 0.0555 \]

\[w'(\text{incorrect}) = 0.1666 \]
Mushroom Instances

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Size</th>
<th>Color</th>
<th>OnPizza</th>
<th>Edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>No .0555</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>N</td>
<td>Y</td>
<td>Yes .0555</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>Yes .0555</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Y</td>
<td>N</td>
<td>No .0555</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>Yes .0555</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>No .1666</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>Y</td>
<td>N</td>
<td>No .0555</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>N</td>
<td>Y</td>
<td>Yes .0555</td>
</tr>
<tr>
<td>N</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>Yes .0555</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>Y</td>
<td>Y</td>
<td>No .0555</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>N</td>
<td>Y</td>
<td>No .1666</td>
</tr>
<tr>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>No .1666</td>
</tr>
</tbody>
</table>

Boosting on Features (step 2)
Computing Weighting

Hypothesis is: Large=Yes, ~Large=No

\[\varepsilon^2 = \sum w(\text{incorrect}) = (2 \cdot 0.0555) + (1 \cdot 0.0555) = 0.1665 \]

\[\alpha^2 = \frac{1}{2} \ln(0.8335/0.1665) = 0.80 \]
An Alternative

- A good world model often has several interacting processes
 - Bayes nets, for example
 - Inputs = Earthquake, Burglary
 - Outputs = John/Mary calls
 - Hidden nodes moderate influence between other nodes
 - Alarm

- Conceptual idea: perhaps hidden nodes are there, even if we don’t know what they are
 - Can we assume the presence of hidden nodes and learn their behavior

Brain Inspiration

- It is hard to make a machine behave intelligently
- Approach: reverse engineering!
- Problem: we don’t really know all about how brains work, either
Neurons

- Brains are made out of **neurons**.
- Lots of them (~10^{11})
 - Highly connected
 - Really slow (~1ms)

- Cartoon version
 - Neuron “fires” along axon given sufficient signal from dendrites

McCulloch-Pitts Model

- (1943) Neuron as threshold unit
- Output is one iff weighted sum of inputs exceeds threshold
Representing Logical Fns

with AND and NOT, can represent any combinational circuit (any boolean function).

Slightly Generalized Model

\[in_i = \sum_j W_{j,i} a_j \]
input fn

\[g \]
activation fn

\[a_i = g(in_i) \]
output
Activation Functions

- **Step function**

 \[g(x) = \begin{cases}
 1 & \text{iff } x > 0, \\
 0 & \text{else}.
 \end{cases} \]

- **Sigmoid**

 \[g(x) = \frac{1}{1 + e^{-x}} \]

Neural Networks

- **Collection of units, connected together**

 Recurrent: cycles allowed
 Feedforward: no cycles
 Layered: can partition into strata
Perceptrons

- (Rosenblatt, 1950s)
- Set of units in a single feedforward layer
 - (inputs connected directly to outputs)

\[
\text{out} = \text{Step}_0 \left(\sum_j W_j x_j \right) = \text{Step}_0 (\mathbf{W} \cdot \mathbf{x})
\]

Output is 1 iff: \(\mathbf{W} \cdot \mathbf{x} \geq 0 \)

For two inputs: \(W_1 x_1 + W_2 x_2 \geq W_0 \)

\[
x_2 \geq \frac{W_0}{W_2} - \frac{W_1}{W_2} x_1
\]

Perceptron Boundaries

\[
x_2 \geq \frac{W_0}{W_2} - \frac{W_1}{W_2} x_1
\]
Linear Separability

- $x_1 \text{ AND } x_2$
- $x_1 \text{ OR } x_2$
- $x_1 \text{ IFF } x_2$

Perceptron Limitations

- Can’t learn functions that aren’t linearly separable
- But, we can learn some “hard” functions easily!
Perceptron Learning

- Suppose we have weights \mathbf{w}
- Observe \mathbf{x}_i, y_i

- What is the error?
 \[e = y_i - g(\mathbf{w} \cdot \mathbf{x}_i) \]

- Squared error:
 \[e^2 = (y_i - g(\mathbf{w} \cdot \mathbf{x}_i))^2 \]

Perceptron Learning

- Squared error: \[e^2 = (y_i - g(\mathbf{w} \cdot \mathbf{x}_i))^2 \]

- How do we minimize the squared error?
 - We can adjust \mathbf{w}'s:
 - \[\frac{de^2}{dw_i} = \]

 - Adjusting w_j in the opposite direction will reduce e^2
 \[w_j' = w_j - \frac{de^2}{\delta w_j} \quad (????) \]

- How big a step should we take?
Perceptron Learning

- How big a step should we take?
 - Could we compute how big a step would reduce the error to zero?
 - Do we really want to fit this training example?

- Learning rate: \(\alpha \)
 \[w_j' = w_j + \alpha \frac{\delta e^2}{\delta w_j} \]

- Yes, but what should \(\alpha \) be?

Learning Rate

- What should \(\alpha \) be?
 - Hard to pick... must tune.

- Stochastic Gradient Descent
 - Learning rate schedule
 - Fancier strategies, e.g. search then converge
Perceptron Learning Wrap-Up

- Repeat
 - Pick an example x_i, y_i
 - Compute error: $e = y_i - g(w \cdot x_i)$
 - For each input j:
 $$w_j' = w_j + \alpha \frac{\delta e^2}{\delta w_j}$$

- Hill Climbing – iterative improvement
 - Given small enough α, it will converge.

- A bit of terminology:
 - Epoch: do an update for every example

Limitations

- Many (most?) interesting functions not linearly separable
 - From late 1960s, interest in perceptrons waned
- Can get around expressive limitations with multilayer networks
Multilayer Networks

With enough hidden units, can represent any continuous function, not just linearly separable ones.

Learning Multilayer Networks

- More difficult, because we do not know what hidden units should represent.
- Multiple weights between every input and output.
- Credit (blame) assignment problem.
- (Re)discovery of backpropagation in 1980s led to resurgent interest in neural networks.
Back-propagation

- Basic idea:
 - Compute effect of every weight on output.
 - Work backwards from output to input
 - Similar to chain rule.
 - If output is wrong value, move weights in \(-\)gradient direction.

Neural Networks

- Appealing due to brain analogy
- Other advantages
 - Simplicity, expressiveness,
 - Ability to handle noise
- Disadvantages
 - Opaque: cannot be used in some applications due to regulatory constraints!
 - Black art of designing structures and tuning parameters
- Ultimately, one of many forms of nonlinear regression
Support Vector Machines

- All about separability:
 - Given a bunch of features, find the (linear) separator that maximizes the *margin*.

- This can be formulated as a quadratic programming problem.
SVMs: Features

- The key is to find features that make the data linearly separable

- When viewed from the original space, these features can be complex looking.

SVMs: Kernel Trick

- Where do we get the “right” features?
 - In higher dimensions, data tends to become linearly separable, even if the features aren’t particularly clever.

- Idea: generate features from our data
 - E.g., compute the dot product of every point \(x_i \) with respect to \(x_1 \)
 - In fact, let’s make every point its own feature

- Linear separators can be efficiently computed for features of this form
 - “Kernel Trick”
 - We won’t worry about mechanics
Scoreboard

X

O

Regression

78