

State Estimation

State Vector:

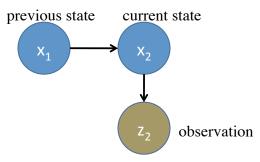
■ Nx1 column vector of quantities we care about.

$$x = \begin{bmatrix} x \\ y \\ \theta \\ s \end{bmatrix}$$

- Which quantities to include is an engineering choice
- Could also estimate acceleration, angular velocity.
- □ Could also include information about the world (e.g. landmarks)
- State Estimation:
 - The probabilistic estimation of the state vector.

State Estimation

Our graphical model



- Many ways of representing probability distribution
 - We'll use multivariate Gaussians

State Estimation: Overview

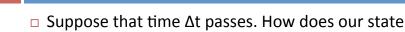
□ Suppose at time step 1, we have an estimate of our state vector (our *prior*):

$$p(x_1)$$

- □ Two basic operations:
 - Propagation
 - Account for passage of time
 - Observation
 - Incorporate information from sensors

Propagation

evolve?



■ Some function of our state x and noise w:

$$\begin{bmatrix} x' \\ y' \\ \theta' \\ s' \end{bmatrix} = f(x, w) = \begin{bmatrix} x + s\Delta t \cos(\theta) + w_1 \\ y + s\Delta t \sin(\theta) + w_2 \\ \theta + w_3 \\ s + w_4 \end{bmatrix}$$

- □ How do we update our mean and covariance?
 - Covariance projection!

Propagation

□ Propagate mean?

$$u_x' = f(u_x, E(w))$$

- Just plug in current state value.
- \square Usually, E(w) = 0
- □ Propagate covariance?
 - It's non-linear, so linearize.
 - But propagation is function of state and w...
 - Linearize WRT both!

Propagation

Linearize:

$$\begin{bmatrix} x' \\ y' \\ \theta' \\ s' \end{bmatrix} = f(x, w) = \begin{bmatrix} x + s\Delta t \cos(\theta) + w_1 \\ y + s\Delta t \sin(\theta) + w_2 \\ \theta + w_3 \\ s + w_4 \end{bmatrix}$$

$$f(x, w) \approx J_x^f(x - u_x) + J_w^f(w - u_w) + f(u_x, u_w)$$

Our Jacobians:

$$J_x^f = \begin{bmatrix} 1 & 0 & -s\Delta t \sin(\theta) & \Delta t \cos(\theta) \\ 0 & 1 & s\Delta t \cos(\theta) & \Delta t \sin(\theta) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad J_w^f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Propagation (summary)

Write down propagation equation in terms of previous state and noise:

$$x' = f(x, w)$$

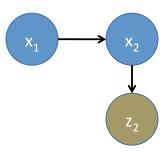
- $\hfill\Box$ Linearize by computing Jacobians J_x^f,J_w^f
- □ Propagate:

$$u'_x = f(u_x, u_w) = f(u_x, 0)$$

$$\Sigma'_x = J_x^f \Sigma_x J_x^{fT} + J_w^f \Sigma_w J_w^{fT}$$

Observation

□ Suppose we get a sensor observation:



- □ The observation tells us something about our state. What distribution do we want now?
 - We want the state given all data (observations)!

 $p(x_2|z_2)$ What is this in terms of quantities that we know???

Observation

10

 \Box We want: $p(x_2|z_2)$

□ Apply Bayes' rule:

$$p(x_2|z_2) = rac{p(z_2|x_2)p(x_2)}{p(z_2)}$$
 $p(z_2)$
 $p(z_2)$
 $p(z_2)$

☐ How do we get these quantities?

Sensor Model

11

 Perhaps we have a compass that observes the heading, contaminated by white noise w₁

$$z(x) = \theta + w_1$$

- $\hfill\Box$ If we know how $\mathbf{w_1}$ is distributed, we can compute the distribution p(z|x)
 - Mean and covariance projection again!

Observation: Putting things together

12

- □ We want our posterior distribution
 - Condition on evidence

$$p(x_2|z_2) \propto p(z_2|x_2)p(x_2)$$

□ We're representing each of these probabilities as Gaussian random variables, so we can write:

$$p(x_2|z_2) \propto Ke^{-\frac{1}{2}(z_2-z(x))^T \sum_z^{-1}(z_2-z(x))} e^{-\frac{1}{2}(x-u_x)^T \sum_x^{-1}(x-u_x)}$$

Observation: Putting things together

13

$$p(x_2|z_2) \propto Ke^{-\frac{1}{2}(z_2-z(x))^T \sum_{z=1}^{-1} (z_2-z(x))} e^{-\frac{1}{2}(x-u_x)^T \sum_{z=1}^{-1} (x-u_x)}$$

Observed value

Predicted value $z - z(x) = z - Hd - z_0$ Linearization: H = Jacobian

We want to write the posterior as a Gaussian.

structure!

- What are the parameters of that Gaussian?
- Note: mean of covariance is its maximum!
- □ Substitute r = z z0 and take logarithm:

$$\chi^{2} = (r - Hd)^{T} \Sigma_{z}^{-1} (r - Hd) + d^{T} \Sigma_{x}^{-1} d$$

A little math...

14

$$\chi^{2} = (r - Hd)^{T} \Sigma_{z}^{-1} (r - Hd) + d^{T} \Sigma_{x}^{-1} d$$

■ Expand...

$$\chi^2 = r^T \Sigma_z^{-1} r - 2 d^T H^T \Sigma_z^{-1} r + d^T H^T \Sigma_z^{-1} H d + d^T \Sigma_x^{-1} d$$

Minimize by differentiating WRT d:

$$\frac{\partial \chi^2}{\partial d} = -2H^T \Sigma_z^{-1} r + 2H^T \Sigma_z^{-1} H d + 2\Sigma_x^{-1} d = 0$$
$$d = (H^T \Sigma_z^{-1} H + \Sigma_x^{-1})^{-1} H^T \Sigma_z^{-1} r$$

A solution, at last!

$$d = (H^{T} \Sigma_{z}^{-1} H + \Sigma_{x}^{-1})^{-1} H^{T} \Sigma_{z}^{-1} r$$
$$x = x + d$$

- Computational complexity?
 - Matrix inversion is O(N³) and N is the dimension of the whole state vector!
- Memory requirements?
 - We're going to have to store the covariance matrix, which is $O(N^2)$

Improving the method

□ Matrix inversion lemma (for invertible C):

$$(A + BCD)^{-1}BC = A^{-1}B(C^{-1} + DA^{-1}B)^{-1}$$

http://www.cs.ucl.ac.uk/staff/G.Ridgway/mil/mil.pdf

$$d = (H^T \Sigma_z^{-1} H + \Sigma_x^{-1})^{-1} H^T \Sigma_z^{-1} r$$

$$d = \Sigma_x H^T (\Sigma_z + H \Sigma_x H^T)^{-1} r$$

Computational complexity now?

Extended Kalman Filter

- This method called EKF
 - We've glossed over the derivation for covariance updates for observation... they're ugly.
- □ Slightly more general/standard form:

$$K = \Sigma_{x}^{-} J_{x}^{T} (J_{x} \Sigma_{x}^{-} J_{x}^{T} + J_{w} \Sigma_{w} J_{w}^{T})^{-1}$$

$$x = x^{-} + K(z - f(x^{-}, 0))$$

$$\Sigma_{x} = \Sigma_{x}^{-} - K J_{x} \Sigma_{x}^{-}$$

EKF: Intuition

□ It's a low pass filter

$$x = x^{-} + K(z - f(x^{-}, 0))$$

How much does the observation disagree with our prior? "innovation"

How much do we trust this measurement, and should we adjust our state? "Kalman gain"

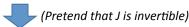
A mixture of our previous estimate and the observation.

- □ Compare to IIR filter: $y[n] = y[n-1] + \alpha x[n]$
 - EKF: we adjust gain *a* at every iteration

EKF: Intuition (Cartoon version!)

$$K = \Sigma_x^- J_x^T (J_x \Sigma_x^- J_x^T + J_w \Sigma_w J_w^T)^{-1}$$

$$x = x^- + K(z - f(x^-, 0))$$



 $x = x^{-} + J_{x}^{-1} \frac{J_{x} \Sigma_{x}^{-} J_{x}^{T}}{J_{x} \Sigma_{x}^{-} J_{x}^{T} + J_{w} \Sigma_{w} J_{w}^{T}} (z - f(x^{-}, 0))$

What fraction of the uncertainty How much does the was our prior responsible for? (larger → trust observation more)

Project from observation space to state space

observation disagree with our prior?

EKF: Optimal Recursive Estimator

- Why do we call it a recursive estimator?
- Suppose I get a stream of observations

$$p(x \mid z1, z2, z3) = \alpha p(z3 \mid x) p(x \mid z1, z2)$$

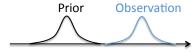
 $p(x \mid z1, z2) = \alpha p(z2 \mid x) p(x \mid z1)$
 $p(x \mid z1) = \alpha p(z1 \mid x) p(x)$

- \square We only have to maintain p(x | ...)
 - Can incorporate new evidence without remembering old evidence.

Mini Quiz: Your turn!

21

- 1. T/F: Covariance projection can only increase uncertainty, |P|
- z. T/F: Observations can only decrease uncertainty
- 3. Sketch the posterior resulting from the prior and observation below (draw the prior, observation, and posterior to scale):



- 4. T/F: A large Kalman gain results from a *strong* prior and a *weak* observation.
- 5. T/F: The Kalman filter is a sound inference method for linear problems.
- Suppose we are tracking tanks from an airplane, estimating x, y, and velocity. What is the effect on time and memory if we double the number of tanks we're tracking?

Why "Extended" Kalman Filter?

- □ The "Kalman Filter" was originally derived for purely linear systems
- Applicability is thus limited to linear problems
- Extended Kalman Filter is generalization to nonlinear systems
 - But inexact!

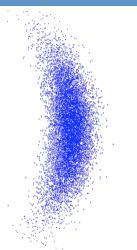
EKF: Linearization Error

- Observations are "incorporated" only once
 - State and covariance are updated based on linearization point at that point in time
- ☐ If state estimate is inaccurate, linearization point will be inaccurate.
 - Introduces error into state estimate
 - Covariance is decreased as though there was no error introduced.
 - □ Filter becomes over-confident.

EKF: Linearization Error

24

- Nonlinear problems have non-linear uncertainties
 - (theta noise greatly exaggerated)
- This shape cannot be represented by a Gaussian distribution.
 - So what happens?



EKF: Linearization Error ■ Mean and covariance are computed around the expected value ■ Non-linear behavior away from expected value is not well approximated. ■ Could we improve upon this? ■ Unscented Kalman Filter ■ Particle Filter

