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State Estimation

23 |
o State Vector:
o Nx1 column vector of quantities we care about.

i

n

o Which quantities to include is an engineering choice
o Could also estimate acceleration, angular velocity.
o Could also include information about the world (e.g. landmarks)

o State Estimation:
o The probabilistic estimation of the state vector.
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State Estimation
I
o Our graphical model

previous State current state

observation

o Many ways of representing probability distribution
o We'll use multivariate Gaussians

State Estimation: Overview
4 7

0 Suppose at time step 1, we have an estimate of
our state vector (our prior):

p(z1)

o Two basic operations:
o Propagation
m Account for passage of time
o Observation
m Incorporate information from sensors
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Propagation

o Suppose that time At passes. How does our state
evolve?

o Some function of our state x and noise w:

[ 2] [z + sAtcos(0) +wy |
vy | | y+ sAtsin(0) + wo
9/ - f(x? w) - 9 + w3

| s I S + wy .

o How do we update our mean and covariance?
o Covariance projection!

N

Propagation

0 Propagate mean? u; = f(ug, E(w))
o Just plug in current state value.

o Usually, E(w) =0

o Propagate covariance?
o It’s non-linear, so linearize.

o But propagation is function of state and w...
m Linearize WRT both!
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Propagation

N

. . / A
o Linearize: TS tcos(9)+w1]

!

y + sAtsin(f) + wo
0+ ws
S+ wq

Z/ :f(wi) =

/

V)

fz,w) ~ Ja{(x — Ug) + J’t{)(w — Uy) + [z, Uw)

o Our Jacobians:

1 0 —sAtsin(f) Atcos(f) 1000

gl — 0 1 sAtcos(d) Atsin(0) gl — 01 00
T 100 1 0 v 0 010
0 0 0 1 0 0 01

Propagation (summary)
s 4|

0 Write down propagation equation in terms of
previous state and noise:

v = f(z,w)

0 Linearize by computing Jacobians Jj, JT{)

0 Propagate:
u; = f(ua:auw) = f(uxao)
S =TI T gy, g
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Observation

odq .|
0 Suppose we get a sensor observation:

o The observation tells us something about our state.
What distribution do we want now?

o We want the state given all data (observations)!

p(gj2 | 22) What |s this in terms of
quantities that we know???

Observation

oy |
o We want: p(562|22)

o Apply Bayes’ rule:
sensor model  prior from propagation step

p(z2|z2)p(z2

p(z2)
—

normalization constant

p(z2|22) =

0 How do we get these quantities?
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Sensor Model
T

0 Perhaps we have a compass that observes the
heading, contaminated by white noise w,

z(x) =0+ wq

o If we know how w is distributed, we can compute
the distribution p(z|z)
o Mean and covariance projection again!

Observation: Putting things together
e

o We want our posterior distribution
o Condition on evidence

P(w2|22) o< p(z2|x2)p(z2)

o We're representing each of these probabilities as
Gaussian random variables, so we can write:

p(a]29) x Ke~3(2=2@) 05 (22 =2(@)) g~ F (@—u) 05 (0—u)
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Observation: Putting things together

p(2]29) o Ke~3(2=2@) 05 (2 =2(2)) =} (@—u) 25 (o= u)

Observed value
Predicted value Linearization: H = Jacobian
z—2z(x) = z—Hd— 2

= r—Hd
o We want to write the posterior as a Gaussian. Note the
o What are the parameters of that Gaussian?

structure!
o Note: mean of covariance is its maximum! 1
0 Substitute r = z — z0 and take logarithm:

x> =(r—Hd)"S Y (r — Hd) +d"'s;'d

i
x> = (r—Hd)"S Y (r — Hd) +d'2;'d
0 Expand...
2 =rTn-!

A little math...

Tlr—2d"HTS Yy +dTHTS P Hd + dT2

o Minimize by differentiating WRT d:
x>

o = —2H"SYr + 2HTY ' Hd + 25 'd = 0
d=H'S'H+2;H'HTS 1y
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A solution, at last!

s 4 |

d=H'S'H+2 ;Y 'H'S r
r=x+d

o Computational complexity?

o Matrix inversion is O(N3) and N is the dimension of the
whole state vector!

o Memory requirements?

o We're going to have to store the covariance matrix,
which is O(N?)

Improving the method
16|

0 Matrix inversion lemma (for invertible C):

(A+ BCD)'BC =A'B(C~ '+ DA 'B)™!

http://www.cs.ucl.ac.uk/staff/G Ridgway/mil/mil.pdf

d=H'S]'H+2;H 't H' s 1y

¥

d=Y.H' (S, + HS, H) r

0 Computational complexity now?
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Extended Kalman Filter

o This method called EKF

o We've glossed over the derivation for covariance
updates for observation... they’re ugly.

o Slightly more general/standard form:
K =3%5J; (L35 Jg + JuZuwdy) ™

z=x +K(z— f(z",0))
Sp =X — KJ,52

EKF: Intuition

s
0 It’s a low pass filter

r=1z" +K(z— f(z",0))
\ J
f
How much does the observation
disagree with our prior?
“innovation”

How much do we trust this measurement, and
should we adjust our state? “Kalman gain”

\ ’ J
A mixture of our previous estimate and the

observation.
o Compare to lIR filter: y[n] = y[n-1] + ax[n]
o EKF: we adjust gain a at every iteration
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EKF: Intuition (Cartoon version!)
[
K =5, JF(Je20 I + TS o)™t
z=az" +K(z— f(z",0))
‘ (Pretend that J is invertible)
— 7T
N 5 Y .
r=x +J, — =(z— f(z7,0))
\JmEx L+ Jw2lw S :
/ [
What fraction of the uncertainty How much does the
was our prior responsible for? observation disagree
(larger = trust observation with our prior?
more)
Project from observation space
to state space

EKF: Optimal Recursive Estimator
o Why do we call it a recursive estimator?

0 Suppose | get a stream of observations
o p(zl | x), p(z2]x), p(z3]x), ....

p(x|z1,22,2z3) =ap(z3]|x)p(x]|z1,z2)
p(x | z1, z2) =ap(z2 | x) p(x | z1)
p(x | z1) = ap(z1 | x) p(x)

o We only have to maintain p(x | ...)

o Can incorporate new evidence without remembering old
evidence.
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Mini Quiz: Your turn!

1. T/F: Covariance projection can only increase uncertainty, |P|

> T/F: Observations can only decrease uncertainty

the prior, observation, and posterior to scale):
Prior Observation

N

- e =

5. T/F: The Kalman filter is a sound inference method for linear problems.
6. Suppose we are tracking tanks from an airplane, estimating x, y, and

velocity. What is the effect on time and memory if we double the number of

tanks we’re tracking?

Sketch the posterior resulting from the prior and observation below (draw

T/F: A large Kalman gain results from a strong prior and a weak observation.

Why “Extended” Kalman Filter?

0 The “Kalman Filter” was originally derived for
purely linear systems

o Applicability is thus limited to linear problems

0 Extended Kalman Filter is generalization to non-
linear systems

o But inexact!
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EKF: Linearization Error
A T

o Observations are “incorporated” only once

o State and covariance are updated based on
linearization point at that point in time

0 If state estimate is inaccurate, linearization point
will be inaccurate.
o Introduces error into state estimate

o Covariance is decreased as though there was no error
introduced.

o Filter becomes over-confident.

EKF: Linearization Error
o Nonlinear problems have |
non-linear uncertainties

o (theta noise greatly
exaggerated)

-
o This shape cannot be

represented by a
Gaussian distribution.

o So what happens?
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EKF: Linearization Error

o Mean and covariance are
computed around the expected
value

o Non-linear behavior away from
expected value is not well B=
approximated.

o Could we improve upon this?
o Unscented Kalman Filter
o Particle Filter

Demo: No Observations
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Demo: With observations
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Next Time

T
0 Decision Processes
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