
EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 1

PROBLEM SOLVING AS SEARCH
EECS 492

January 11, 2011

On Problem Solving

 This course is about computing the “right thing to
do” when faced with a problem.

 We start with very general purpose algorithms
that:

 … can be used on virtually any problem

 … make very few assumptions

 … very easy to implement

 … are often hopelessly slow

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 2

Exploiting Problem Structure

 The reason these methods are sometimes slow is
because they don’t exploit structure in the problem
 Exploiting problem structure leads to fantastically better methods

 Much of this course is about how to exploit particular types of
structure (probabilistic, constraints, logic)

 … but sometimes there is no structure (where is the Ark?)

And so, today…

 We’ll talk about general-purpose problem solving

 Very useful

 More complex methods are based on these
simple methods

 Methods based on search

 As opposed to what?

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 3

Goal-Based Agent

Environment

percepts

Goal Test

Hypothetical

action

sequence

Planner

Predicted State

Pass test?

actions

Update Predict

state model

Agent

Executed action

Problem Solving

 What do we need to describe a problem?
 Initial state
 What is state?

 What actions can we take from state s?
 {jump, forward, wait} = Actions(s)

 What is the result of action a in state s?
 s' = Result(s, a)

 Is ‘s’ a goal state?
 IsGoal(s)

 What is the cost of a path?
 PathCost(a1, a2, a3, …)

Notice the limitations of this formulation!

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 4

S

D

FGR

P

L

AA

K

FW

SB
C

T

BG

M

A

Y

Motivating example: Route Planning

Goal: Get from AA to SB

Initial State?
Actions?
Results?
IsGoal?
PathCost?

State space graph interpretation

 States are “places”
 In route planning example, states are literally places.
 In general, states record all relevant properties of environment.

 Actions are “moves”
 Move from one situation (state) to another

 Solution:
 A path from the initial state to a goal state

 Optimal solution
 The shortest possible path from the initial state to a goal state.

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 5

Vacuum World

Action Space:
L – move Left

R – move Right

S – Suck up the dirt

Goal States

Goal: No dirt!

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 6

State Space Graph

 We can connect states with actions, just like we did
with the route planning example…

S

D

FGR

P

L

AA

K

FW

SB
C

T

BG

M

A

Y

Your turn: Draw the State Space Graph

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 7

L

1 2

3 45 6

7 8

State Space Graph (solution)

Q: How to get from 5 to 8? A: [Right, Suck]

Mini-quiz: Environment Properties

Vacuum World Roomba

Full or Partial
Observability

Determinstic
or Stochastic

Static or
Dynamic

Discrete or
Continuous

Single or
multi agent

Partial

Deterministic

Static

Discrete

Single

Full

Stochastic

Dynamic

Continuous

?

http://irobot.com/sp.cfm?pageid=335

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 8

Designing a toaster (Agent types review)

Planning \ Model Stateless Fixed Model Learning Model

Reflexive

Predictive

Toaster model 492

Agent

Heating
element

Sensors,
controls

actions

percepts

How can we generalize our approach?

 Stochastic environments

 Probabilistic reasoning

 Decision processes (later in the course)

 Partial observable environments

 Don’t know which state we’re in…

 Keep track of which states we might be in.

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 9

Belief states: a preview

 We can convert partially-observable problems into
fully observable problems!

 Create a new search problem with a different state
space:
 In new problem, states correspond to sets of states

that we might be in.

 How do we handle actions and results?

 How do we handle goal test?

 How do we handle path cost?

Belief States: Try it!

 Draw the state space
diagram for the vacuum
world where:
 Robot is lost.

 Location of dirt is
unknown.

 Robot has no sensors.

 Goal: no dirt.

 Can we clean the house?

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 10

Unknown Initial State, no Sensors

Analogy to NFAs and DFAs

 Tokenizing files using regular expressions:

 SYMBOL: [a-zA-Z0-9_]

 KEYWORD: if | while | for

 The actual states we care about are the type of token
(e.g., SYMBOL or KEYWORD)

 Our belief state is the set of parsing states that we
might be in

 If we receive characters “w”, “h”, “i“, etc., our belief state
consists of both SYMBOL and KEYWORD; future
characters will resolve our belief state until we reach a
production state.

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 11

Non-deterministic actions

 Now, suppose that:
 Robot doesn’t move reliably: sometimes attempting to move results in

no movement.

 Robot doesn’t clean reliably: half the time, it misses some dirt in the
room.

 Is there a (finite) action sequence that cleans the house?
 With 100% probability? No.

 LLL…. SSS… RRR… SSS…

 Synchronizing Sequence. (Maze example).

 Suppose that rooms become dirty again with probability P each
turn and we get $1 if both rooms are clean, we pay $1 if one room
is dirty, and we pay $5 if both rooms are dirty.
 For this, we’ll have to wait for better methods later in the course.

Limits of state space graph

 Not all problems have simple state space graph:

 State space can be infinite (including continuous)

 Results function can be very complicated

 Could be a simulation of the laws of physics…

 In these cases, it is important to allow Actions() and
Results() to be generalized functions

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 12

Search

 We have not actually described a way of solving
these problems…. Until now!

 Search

 Any systematic way of traversing the graph of states in
order to find a sequence of actions leading to a goal
state

 General approach, can be applied to any well-defined
problem

Search Trees

 Set of all paths, starting at initial state

 Search node
 corresponding state in state space

 predecessor in path, or parent

 action applied to parent to generate node

 path cost from root

 Elaborate paths in a search tree by expanding
search nodes
Which nodes do we expand?

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 13

Search Strategy

 Dictates which node to expand in any particular
search situation

 Candidates are nodes at fringe: leaves of partial
search tree

 Maintain fringe in generalized queue

Queue ADT

new Queue() creates a queue

q.isEmpty() emptiness predicate

q.get() returns/removes next elt

q.put(elt) inserts elt into q

q.putAll(elts) puts all elts into q

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 14

General Tree Search

function Tree-search(problem)

returns a solution, or failure

fringe = new Queue();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node fringe.get()

if problem.isGoalState(node)

then return node;

fringe.putAll(problem.expand(node))

Why is a goal node a solution?

Which node in the fringe
does get() return?

Measuring Search Performance

 Completeness
 Is the algorithm guaranteed to find a solution if it

exists?

 Optimality
 Does the strategy find the minimum path cost

solution?

 Time Complexity
 How long does it take to find a solution?

 Space Complexity
 How much memory is needed to perform the search?

Our search strategy will affect all of the above!

EECS 492 Fall 2008 Sep-8-08

M. Wellman & E. Olson 15

Next time: Uninformed Search

 Search strategies based only on structure of search
tree

 Questions:

 How do alternative approaches compare wrt our
performance measures?

What are key tradeoffs?

What would constitute informed search?

