EECS 492 Fall 2008 Sep-17-08

“I know what you’re thinking about,” said Tweedledum; “but it isn’t so, nohow.”

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s logic.”

Propositional Logic

EECS 492
February 8th, 2011

Administrative

s
o Practice exam has been posted

0 Quiz review tonight, 7-9p right here!
o Will go over practice exam.
o ByoQ!

0 Exam: 7-9p in CHRYS 220
o Just you and a pencil-- closed book

M. Wellman & E. Olson 1

EECS 492 Fall 2008 Sep-17-08

Last time

I |
o Propositional Logic
o Connectives (logic gates)
o Entailment (inference)

0 We used human brains to deduce new facts from
those that we already knew.

oi.e., where it’s safe to go in the Wumpus world.

Today

s |
o Atiny, tiny review.

o How do we automate inference of propositional logic?

o Simple method:
= Model Checking

o Constructing proofs
o Resolution

o Search strategies
®m Forward Chaining
= PL-Resolution

M. Wellman & E. Olson

EECS 492 Fall 2008 Sep-17-08

Five Logical Connectives

Odd Implications
s

o “5is odd” implies “Tokyo is the capital of Japan”

o “5is even” implies “Tokyo is the capital of Japan”

o “5is even” implies “Tokyo is the capital of the
United States”

M. Wellman & E. Olson 3

EECS 492 Fall 2008 Sep-17-08

Mini Quiz
A T

Are the following sentences:
o Valid?
o Satisfiable?

Consider these sentences (with respect to the vacuum world)
O (D,vDg) A=Dga D, ?
o [(D,vDg) A -Dgl=>D, ?
o [(D,vDg) A =Dgl <=>D, ?

Inference

o Process by which some sentences are derived from
others.
o Aka reasoning
o Record of an inference process called a proof

o Can derive a from KB using method i:

KB «

1

M. Wellman & E. Olson 4

EECS 492 Fall 2008

Properties of inference methods

o Soundness

KB [~ a only when KB = «

l

i.e., no false conclusions

o Completeness

whenever KB): oL it is true that KB b o

i.e., no missing conclusions

Gottfried Wilhelm Leibniz (1646-1716)

... if we could find characters or signs
appropriate for expressing all our thoughts
as definitely and as exactly as arithmetic
expresses numbers..., we could in all
subjects in so far as they are amenable to
reasoning accomplish what is done in
Arithmetic... For all inquiries... would be
performed by the transposition of characters
and by a kind of calculus, which would
immediately facilitate the discovery of
beautiful results...

— Dissertio de Arte Combinatoria, 1666

M. Wellman & E.

Olson

Sep-17-08

EECS 492 Fall 2008

Inference Methods

o Now, all we need is an inference method we can
implement!

o We’ll describe several!
o Model Checking
o Proof Trees
o Forward Chaining
o Backwards Chaining

Model Checking KB |- o

i
N

o A generic inference mechanism

o Enumerate all models (i.e., truth assignments) and check
that o is valid in which KB is true

. l.e., check that o is valid given KB

- Time complexity: O(2")

- Space complexity: O(n)
o Sound:

o Yes: directly implements the definition of entailment
o Complete

o Yes: given finite KB and o (because there are only finitely
many models to examine)

M. Wellman & E.

Olson

Sep-17-08

EECS 492 Fall 2008

Model Checking Example

(IsDog(Fido) v IsCat(Fido)) A

0 0 0
(IsCat(Fido) < Meows(Fido)) A
. 0 0 1
(= Meows(Fido))
0 1 0
0 1 1
i ?
o Does KB): IsDog(Fido) ? L o 0
1 0 1
1 1 0
1 1 1

Model Checking Example

(IsDog(Fido) v IsCat(Fido)) A

0 0 0
(IsCat(Fido) < Meows(Fido)) A : - i

[(= Meows(Fido))] - - B
0 1 0

o Does KB): IsDog(Fido) ? L o 0
1 1 0

M. Wellman & E. Olson

Sep-17-08

EECS 492 Fall 2008

Model Checking Example

(IsDog(Fido) v IsCat(Fido)) A

(= Meows(Fido))

o Does KB |: IsDog(Fido) ?

Model Checking Example

o o o

(IsCat(Fido) < Meows(Fido)) A
(= Meows(Fido))

U U .

o Does KB |: IsDog(Fido) ?

M. Wellman & E. Olson

Sep-17-08

EECS 492 Fall 2008 Sep-17-08

Model Checking Example

s |
(IsDog(Fido) v IsCat(Fido)) A
(IsCat(Fido) < Meows(Fido)) A
(= Meows(Fido))

o o o

U U .

o Does KB): IsDog(Fido) ?

o For all world models in which KB is
true, IsDog(Fido) is true, so YES!

Model Checking: Hindsight

I |
o Our goal in PL was to be able to efficiently handle
incomplete knowledge
o Belief state becomes cumbersome!
o But model checking has the same complexity...

o Model checking enumerates every state!

o We haven’t yet really “cashed in” on our new fancy
representation of incomplete knowledge!

M. Wellman & E. Olson 9

EECS 492 Fall 2008

Proving without Model Checking

o Standard patterns of inference that can be applied to
derive chains of conclusions.

o Pattern:
premise

conclusion
- If KB contains premise, can add conclusion

o Provides a different (than enumeration) way of deciding
entailment: by proof

- A proof is a sequence of applications of sound
inference rules.

Why Proof?

o Big win if the desired entailment can be derived without
even caring about the truth values of most of the
propositions!

o In our vacuum cleaner world, we might have 3
propositions: D,, D,, R,.

o If we know (D, v D,) and - D, then we should be able to

conclude D, without having to consider whether Riis in
a or not!

o We can! Proof using resolution (you’ll see!)

o More pronounced savings with propositions about the
door is open, the lights are on, the weather, etc.

M. Wellman & E. Olson

Sep-17-08

10

EECS 492 Fall 2008

Some Inference Rules
T

o Modus Ponens (MP) a=> p,a

o And-elimination (AE) ﬁ
anf

0 Biconditional-elim (BE) a

a<f (a=pB)r (=)
(@=B)r(f=a) asp

o Contrapositive (CP) M

(-p=-a)

o Many more sound rules... (verify through truth-tables)

DeMorgan’s
s

o What do you have now?
o Not of Ands: NA —(A A B)
o Not of Ors: NO -(A v B)
o Or of Nots: ON (-A v -B)
o And of Nots: AN (-A A -B)

o Reverse the letters, swap the O’s for A’s.
o NO = AN
o NA =ON
o AN =NO
o ON = NA

M. Wellman & E. Olson

Sep-17-08

11

EECS 492 Fall 2008

Proof Example: Pit World

I
Q: Py,

[AE, S,]
S, (Plyzv P,1) =B,

(B
1Py -By; | ??

> [contrapositive, S,]
KB S;:Byy = (P, VPy) Sg: =By ;=>=(P1,VP,,)
< S3:By; < (P, VP,,VP3,)
S [MPI S4/ sg]
S

: =B
4 Tl S =(Py,VP,,)

_Ss: By
[de Morgan’s, S4]

[BE, Sz] Si0t 7P1p A =Py
Se: (By1=>(P1,VP, 1))

[AE Sio]
A ((P1,2VP2,1) =>Bl,1)

S0t 7Py,

Proof as Search

s
o State: Set of sentences
o Initial state: KB
o Successors: all possible applications of sound inference
rules
o Can use any search method
o But do they all make sense?
o Can be dramatically more efficient than model checking
o Inference in PL is NP-complete

o In the worst-case searching for proofs is no more efficient than
enumeration

M. Wellman & E. Olson

Sep-17-08

12

EECS 492 Fall 2008

Propositional Logic Proof Search Tree

L
{8, -85}
{SI_S6} XX (XX
e TR
{Sl_s7} (XX

/N

Monotonicity

o The set of entailed sentences can only increase as
sentences are added to KB

o For any sentences aand f3

if KB)ZOL then KBAB):OL

o Implications

- Conclusions from sound inference rules are never
defeated by further inference

- Search method never needs to backtrack: no
“branching”

M. Wellman & E.

Olson

Sep-17-08

13

EECS 492 Fall 2008 Sep-17-08

Propositional Logic Proof Search Tree

L
{8, =S5}
{Sl — S6} (XX
[AE]
{S,-5;}

/ l \ So, what we’d like to do is to apply ops
early on that answer our questions, and
then simply stop!

(Unit) Resolution
Iy

av p,-pf

o

o “logically equivalent” to modus ponens
o (-b => a)*(-b)
o Often expressed as requiring literals
(cVaiVazV..Vaj)A-c

ar VazV..Va;

M. Wellman & E. Olson 14

EECS 492 Fall 2008 Sep-17-08

Unit Resolution Example
T
o In our vacuum cleaner world, we might have 3
propositions: D, D, R,.
olf we know (D, vD,) and - D, then we should be

able to conclude D, without having to consider
whether Ris in a or not!

o (Unit) resolution is an inference rule that allows
this conclusion!

Full Resolution Rule
T

(cVaiVasV..Va;)N(—cVb VbyV..Vb)
ap VasV..Va; Vb Vby V...V b

o Resulting clause should contain only one copy of each
literal

o i.e., combine any a’s and b’s that are the same literal

M. Wellman & E. Olson 15

EECS 492 Fall 2008 Sep-17-08

Soundness of Resolution
T

(cVairVasV..Va;)AN(—eVb Vb V...V byg)
ar VasV..Va; Vb VbV ..Vb

o Suppose c is false. Then:
O a;va,v..va; mustbe true.

o Suppose cis true. Then:
o b, vb,v..vb, mustbe true.

o C must be either true or false. Thus:
o Either the a’s must be true OR the b’s must be true.

Conjunctive Normal Form

o Resolution rule applies directly only to disjunctions of
literals

o Every PL sentence is logically equivalent to a conjunction
of disjunction of literals (a CNF sentence)

0 k-CNF has exactly k literals per clause
(ly VeVl) A (lyveviy) Acea(l v vl L)

o Every PL sentence can be transformed into a 3-CNF
sentence

M. Wellman & E. Olson 16

EECS 492 Fall 2008 Sep-17-08

Conversion to CNF
A T

Example sentence B, ; <> (Py, v P,,)

1 Eliminate <, replacing a< by (=) A (p=a)
(81,1 =(P,, v P2,1)) A((Pyy v Pz,1) =>Bl,1)

2 Eliminate =, replacing a=f by —a v
(By1V P, vPy) A(=(P, v P, ,) VB,)

3) Ensure - applies only to literals by moving inwards

(7B VP, VP) A((mP A =Py 1) VB)

2 Distribute v over A wherever possible

(_'Bl,l \ P1,2 v P2,1) A (_'Pl,z \ Bl,l) A (_'Pz,l \ Bl,l)

Simple Full Resolution Example
s

01 Some rooms are dirty:
oS1: (D,vD,)
o Vacuuming cleans them:
o S2: (v, =>-D,) converted to (-V,v-D,)
o Resolving S1 and S2 gives us:
o(-V,vD,)

M. Wellman & E. Olson 17

EECS 492 Fall 2008 Sep-17-08

Refutation
A T
a F? avp

o Cannot derive a v from a using resolution rule.
o However we can use resolution to prove the conclusion.

o Refutation proof:
- Assume negation of goal sentence, derive a contradiction (false).
- If successful, goal sentence must be entailed.

Resolution Refutation

I |
o Show that (KB A —a) is unsatisfiable.
o Convert (KB A —=a) to CNF

o Apply resolution rule to resulting clauses.

- Each pair that contains complementary literals is resolved to
produce a new clause

- Add to the set if it is not already present

o Continues until one of two things happen
- There are no new clauses that can be added, in which case KB
does not entail a

- An application of the resolution rule derives the empty clause, in
which case KB does entail o

M. Wellman & E. Olson 18

EECS 492 Fall 2008

PL Resolution
A T

function PL-resolution (KB, o) returns true or false
inputs KB, the knowledge base, a sentence in PL
a, the query, a sentence in PL
clauses <= CNF representation of (KB A —a.)
new <— {}
loop do
for each C, C;in clauses do
resolvents < PL-resolve (C;, C)
if resolvents contains {} then return true
new <— new U resolvents
if new C clauses then return false // proved nothing new
clauses <— clauses U new

Example

Given P, prove (PvQ):
o S1:PvFalse (right?)
o S2:-(PvQ) >
m S2a:-P
m S2b: -Q

Resolve S1 and S2a to get
o S3: False

o If we can ever derive the empty clause, we’ve derived that “false” is
entailed (as a true statement) by the KB combined with the negated
sentence to prove.

o Since False can’t be true, there is a contradiction in the KB with the
negated sentence.

o Since we assume the KB was correct, the contradiction must have been
introduced by the negated sentence.

M. Wellman & E. Olson

Sep-17-08

19

EECS 492 Fall 2008

Example
-
Try to prove: =P, ,

‘ -Bi1v PV B1,1| —“Pai v Piav Py |=By v PyyvBy, H Piav Py v=Py, H =P34 H “P1.2‘

e

empty clause

Your Turn

Prove Modus Ponens:
[P~ (P=>Q)] =>Q

o Step 1: We'll prove by refutation,
so negate the hypothesis.

o Step 2: Convert to CNF.

o Step 3. Find a sequence of
resolutions

o We expectto find a
contradiction.

Solution:
Negate it: - { [P » (P=>Q)] =>Q }

Convert to CNF:

o -{[Pr(P=>Q)]=>Q}
~{-[P~(-PvQ)lvQ}
{--lPr(-PvQ)]*-Q}
{Pr(-PvQ)]r-Q}
PA(=PvQ)*-Q
S1: P
S2:-PvQ

o S3:-Q
Resolve S1 and S2 to get

o S4:Q
Resolve S3 and S4 to get

o S5: FALSE

Negation is unsatisfiable, so non-
negated must be valid.

M. Wellman & E. Olson

Sep-17-08

20

EECS 492 Fall 2008 Sep-17-08

Some Special Cases

o All sentences conjunctions of prop symbols
o No disjunction or negation allowed
m E.g., AANBACADA...
o KB is a database
o How do we do inference?
= Answer queries by lookup

o All sentences of the form
P,AP,A...AP,=Q
o Horn sentences

®m At most one positive literal in CNF form. (Why is this the same as the form
above?)

o P;apremise, Q the head
o Forward chaining answers all queries in time linear in KB

Forward Chaining

o Maintain for each rule a count of unsatisfied
premises

o Initialize agenda to the known facts
o Loop until empty agenda
o p < Pop(agenda)
o if p not already marked as inferred
m mark p as inferred

m decrement count for rules with p as a premise
m when count =0, put rule’s head on agenda

M. Wellman & E. Olson 21

EECS 492 Fall 2008

Forward Chaining Example

P = Q@

LANM = P
BANL = M
AANP = L
AANB = L

Revenge of Model Checking

o Our earlier attempts at model checking were very

expensive:
o Consider every possible model (2N)!
(AlB|cCc| ANBYVO |
o Consider: A~ (Bv () S 0
0 0 1 0
0o 1 0 0
o Couldn’t we have determined 01 ne il 0
the futility of A=0 earlier? ——— 0
1 0 1 1
1 1 0 1
1 1 1 1

M. Wellman & E.

Olson

Sep-17-08

22

EECS 492 Fall 2008

Model Checking: Back Tracking

o Idea: Try to explicitly construct a model that satisfies our
KB (as opposed to enumerating models)

o BackTracking is a satisfiability algorithm
m Use refutation to prove something!

How do we initially invoke

o DPLL_search(KB, model) DPLL_search?
o If any clause in KB is false in model,
m Return false How do we evaluate
o If all clauses in KB are true in model, C'auseiWith a partial
m Return true model:
o Find an unbound variable v in our KB How do we apply
o Return DPLL_search(KB, model U v=t) | our CSP

DPLL_search(KB, model U v = f) optimizations to this

problem?

KB:
-A v -B

B

-Av C

Is KB satisfiable?

Back Tracking

v -C

X

x/c\x

M. Wellman & E.

Olson

Sep-17-08

23

EECS 492 Fall 2008

Hard Problems

o At the heart of inference is satisfiability.
o We've been doing constraint satisfaction!

o Why is n-queens easy?
o Somehow related to the density of solutions

o Consider random 3-CNF sentences. e.g.

(-Dv -=-BvC)A(Bv-=Av=C)A

(-Cv =BVE)A(Ev-DVB)A

(BvEvV=C)

o Hard problems seem to cluster near clauses/symbols = 4.3 (critical
point)

Hard satisfiability problems

0.8 X‘l .
06 .

04 a

Pr(satisfiable)

02 .

0 C Il 1 1 I L I i E——
0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n

M. Wellman & E. Olson

Sep-17-08

24

EECS 492 Fall 2008 Sep-17-08

Hard satisfiability problems
s

2000 T T T
1800 DPLL —+
1600 - WalkSAT -~
1400
1200
1000
800

200 | / %
o
B e P, el 1 1

0 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n

Runtime

o Median runtime for 100 satisfiable random 3-CNF sentences,
n =50

Next Time

o First Order Logic
o Enrich our language to understand objects and
relations between those objects
® Wumpus rules will be easier & less tedious to express

M. Wellman & E. Olson 25

