

Today's Plan

- □ Last time, we saw how inference is "easy" when we have the full joint distribution
 - Can easily extract any marginal or conditional
- □ But the full joint distribution becomes very large
 - Do we really need to write the joint distribution for N fair coin flips?
- □ How do we exploit structure of problems in order to reduce memory complexity?

The problem with full joint distributions

- □ Joint distributions often contain *redundant* information
 - If x, y and z are independent, Pr(x,y,z)=Pr(x)Pr(y)Pr(z)
 - Pr(x,y,z) requires 8 quantities
 - (well, 7 since it must sum to 1)
 - Pr(x), Pr(y), Pr(z) requires 3 quantities
 - → Independence yields space savings!
 - If we noticed this factorization, we could compute any joint probabilities we wanted, on demand.
 - Don't need a complete table!
- Many problems have independent or conditionally independent random variables

How to avoid writing joint distributions: The Chain Rule

- ☐ The product rule gives us:
 - \square P(A, B) = P(A | B) P(B)
- □ We can apply this to more complicated situations:
 - \square P(A, B, C) = P(A | B, C) P(B, C)
 - And apply it again:
 - \square P(A, B, C) = P(A | B, C) P(B | C) P (C)
- □ Any joint probability can be expanded into products of this form.

What does this buy us?

P(A, B, C, D) = P(A | B, C, D) P(B | C, D) P(C | D) P(D)

- □ How many numbers to specify P(A, B, C, D) ?
 - **1** 19
- □ How many numbers to specify P(A | B, C, D)?
 - 8
- □ How many numbers to specify P(B | C, D)?
 - 4
- □ How many numbers to specify P(C | D)?
 - 2
- □ How many numbers to specify P(D)?
 - **n** 1
- What did this buy us? Nothing! 15 = 8 + 4 + 2 + 1

How to avoid writing joint distributions: Exploit Independence

$$P(A, B, C, D) = P(A \mid B, C, D) P(B \mid C, D) P(C \mid D) P(D)$$

 $15 = 8 + 4 + 2 + 1$

- □ A patient might have a **Cold** or a **Disease**. Both Colds and Diseases can cause **Bronchitis**, but only a Cold makes you **Achy**.
- □ Suppose C and D are independent
 - C: Patient has a Cold
- $P(A \mid B, C, D) P(B \mid C, D) P(C) P(D)$
- D: Patient has a *Disease*

- P(C | D) = P(C)
- Suppose A and B are conditionally independent given C
 - A: Patient symptom includes *Achy*
 - B: Patient symptom includes *Bronchitis*
 - $P(A \mid B, C, D) = P(A \mid C, D)$ $P(A \mid C, D) P(B \mid C, D) P(C) P(D)$

$$4 + 4 + 1 + 1 = 10$$

Bayesian Networks

□ We can graphically denote the independence of variables:

A patient might have a **Cold** or a **Disease**. Both Colds and Diseases can cause **Bronchitis**, but only a Cold makes you **Achy.**

- □ This *Graphical Model* directly encodes the relationship between joint and conditional distributions!
 - The graph is not merely a cartoon—it has specific, exploitable meanings.
 - Joint = product of conditional for each variable

P(A, B, C, D) = P(C) P(D) P(A | C) P(B | C, D)

Bayesian Networks and CPTs

□ Each node represents a *conditional probability* and has associated with it, a CPT:

P(A, B, C, D) = P(C) P(D) P(A | C) P(B | C, D)

Reasoning about dependence

- □ Clearly LEAVE depends on OVERSLEEP. ARRIVE depends on LEAVE.
 - Intuitive causal relationships.
- □ Q: Does LEAVE depend on ARRIVE?
 - Yes: changing the order doesn't change independence
- □ Q: Does ARRIVE depend on OVERSLEEP?
- Q: Are ARRIVE and OVERSLEEP conditionally independent given LEAVE?

Reasoning about dependence

- □ Clearly, Icy is dependent on wet and cold.
- □ Q: Is wet dependent on icy?
- □ Q: Are wet and cold independent?
- □ Q: Are wet and cold *conditionally* independent given icy?

Reasoning about dependence

- From before:
 - WET and COLD are conditionally dependent given ICY.
- Q: Are WET and COLD conditionally dependent given ACCDIENT?

Reasoning about dependence

- □ Q: Are ACCIDENT and JAMS independent?
- Q: Are ACCIDENT and JAMS conditionally independent given ICY?

Dependence: Your turn!

- □ If X and Y are *unconditionally* dependent, which of the following are true?
 - A) X causes Y
 - B) Y causes X
 - C) Knowing something about X changes your belief about Y
 - D) X is Y's parent, or Y is X's parent.
 - E) X and Y share some common ancestor in the Bayes net
- If X and Y are conditionally dependent given Z, which of the following are true?
 - A) X and Y might also be *unconditionally* dependent.
 - B) Z causes X and Y
 - C) If X and Y are not unconditionally dependent, then Z is a common descendent of X and Y
 - D) I couldn't think of a fourth option.

The Earthquake Network Burglary Earthquake Alarm MaryCalls What is the joint distribution? P(BEAJM) = P(B) P(E) P(A | BE) P(J | A) P (M | A)

Elementary Inference

- How do I compute an arbitrary distribution?
 - □ For example, P(B, A | E)?
- Method 1: Try to cleverly manipulate query to express in terms of known conditional probabilities.
 - □ Like we did with the diseases example
- Method 2: Methodically!

Elementary Inference

- □ Every distribution can be written in terms of the joint distribution and marginalizations of the joint distribution. Our example: P(BA | E)
- $\square P(BA \mid E) = P(BAE) / P(E)$
- Both P(BAE) and P(E) are marginalized versions of the joint distribution.

- Our query: P(BA | E) = P(BAE) / P(E)
- \square P(BA | E) = P(BAE) / P(E)

□ Bayes net tells us:

$$P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)$$

$$P(B, A, E) = \sum_{M} \sum_{J} P(B)P(E)P(A|B, E)P(J|A)P(M|A)$$

$$P(E) = \sum_{B} \sum_{A} \sum_{M} \sum_{I} P(B)P(E)P(A|B,E)P(J|A)P(M|A)$$

Tedious, but straight forward!

Earthquake

MaryCalls

Alarm

JohnCalls

Restructuring a Graphical Model

Are there any other graphical models that are inferentially equivalent to this one?

- Easy answer: we can always add edges
 - Resulting CPTs will be wasteful, but it's inferentially equivalent.
 - Adding edges == ignoring the structure in the problem

Reordering a Graphical Model

Both of these models are inferentially equivalent:

 \square P(A,B,C) = P(A | BC) P(B | C) P(C)

 \square P(A,B,C) = P(C | BA) P (B | A) P(A)

□ The hard part is determining which edges can be left out!

Reordering a Graphical Model

- Algorithm:
- Input: Graph g, with N variables
- Output: Graph g', with new variable order V
- □ for i = 1 : N
 - Add a node for variable V_i to the graph g'
 - Initially, no edges.
 - for j = 1 to i
 - Consider the original graph g. Suppose that we have observed all the variables in g', except V_i and V_j. If V_i and V_j are conditionally dependent, add an edge from V_i to V_j in g'

Your turn: again!

- □ Which ordering will produce the most edges?
 - Try to reason about it without actually constructing the graphs by trial and error.
 - Easier: What node should be last?
 - Harder: Which nodes should be first?

Reflection

□ Changing node order changes the number of edges

 In general, causal relationships lead to the smallest number of edges