

Administrative

- □ PS2 due today
- PS3 team assignments will occur at 11:59p tonight!Update your team preferences!

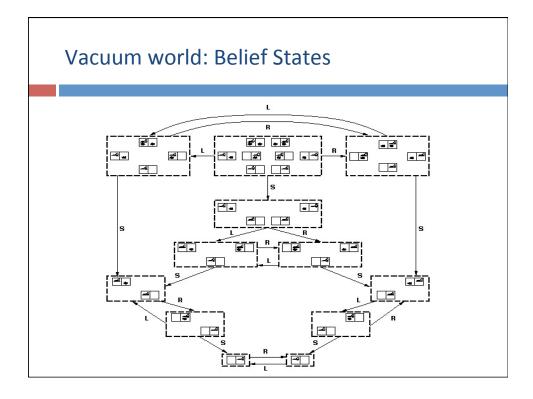
Today

An approach for dealing with incomplete knowledge

□ Introduce an important problem domain: Wumpus

Incomplete Knowledge

- We don't always know the actual world state
- Leads to two questions:
 - How do we *represent* incomplete knowledge?
 - How do we reason about incomplete knowledge?
- □ Previously mentioned: Belief state
 - Representation:
 - set of possible states
 - Reasoning:
 - our search methods from before.



Incomplete Knowledge

- □ Consider n room version of vacuum-world
 - Assume no dirt sensors
 - How many states?
 - 2ⁿ possible world states
 - Search space: all subsets of world states

 2^{2^n}

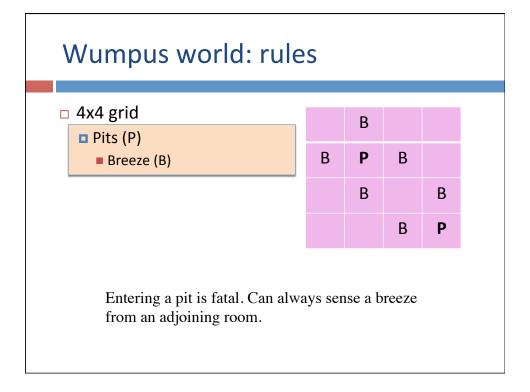
Much simpler (in this case): *reasoning* Just go to every room and *Suck*!

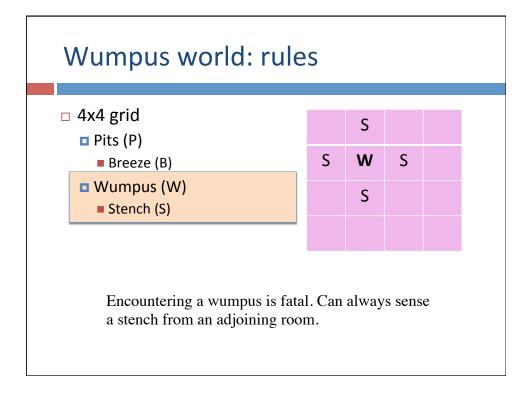
Describing Knowledge

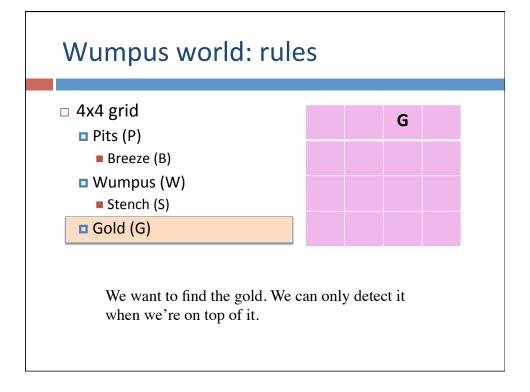
- Often can be much more concise than enumerating possible states
- Idea: construct and manipulate descriptions of knowledge
- □ Some descriptions implicit in others:
 - At least one room is dirty. Rm B is clean.
 - Is room A dirty?
 - How many rooms are dirty?

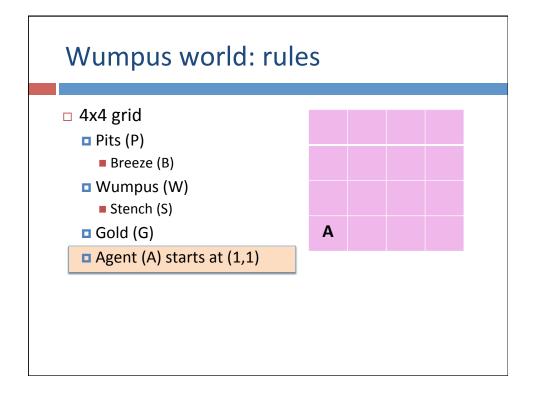
Hunt the Wumpus

- Let's see how knowledge and reasoning can help us
- □ Today:
 - Focus on concepts and terminology
 - Use human intuition to solve problems









Wumpus world: encoding

- ☐ Knowledge Representation:
 - □ Z_{x,y} means "Z" at (x,y)
 - $\blacksquare \neg Z_{x,y}$ means "Z" *not* at (x,y)
- □ Wish to discover location of G and safe squares that let us get there!

S	W	SB	P
	SB	G	В
В	Р	В	
Α	В		

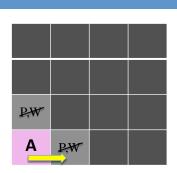
Wumpus world: Example

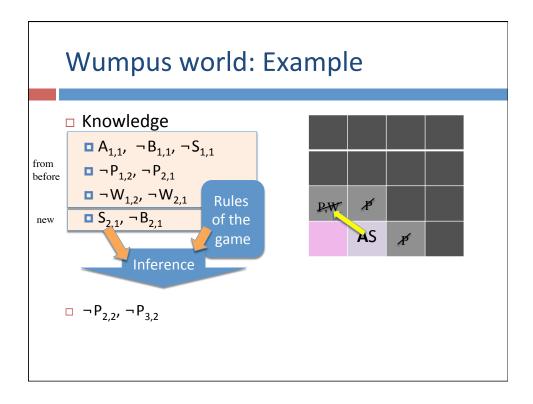
- □ Percepts (Knowledge)
 - □ A_{1,1}
 - $\square \neg B_{1.1}$
 - $\square \neg S_{1,1}$

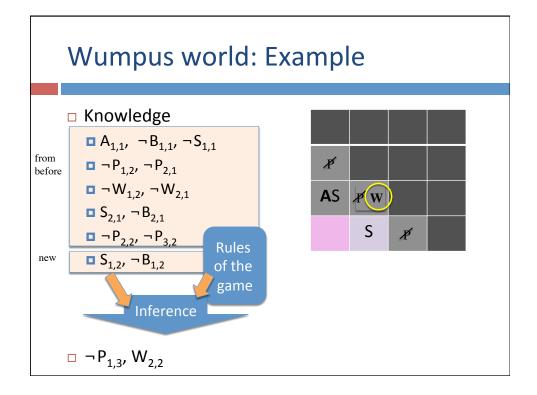
Rules of the

Inference

- $\square \neg W_{1,2}, \neg W_{2,1}$
- $\square \neg P_{1,2}, \neg P_{2,1}$

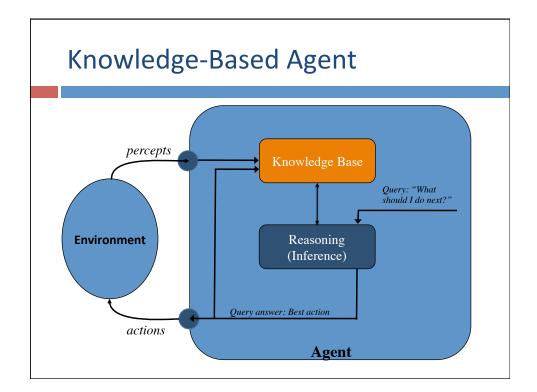






What have we learned?

- □ We can do well in Hunt the Wumpus without enumerating belief states.
- □ We can reason about knowledge directly.
- But we (humans) were doing the reasoning! How do we get autonomous agents to do the reasoning?



Encoding knowledge

- Wumpus: we encoded some of our knowledge (the presence/absence of certain features)
- □ How do we encode the rules of the game?
 - e.g.: "The Wumpus emits a stench that can be detected from adjacent cells"
- □ We need a more powerful way of encoding knowledge!

Knowledge Representation

- □ Knowledge representation language: notation for expressing a KB
- Consists of
 - Syntax: defines the legal sentences
 - Semantics: facts in the world to which sentences correspond
- □ Logic: KR language with well-defined syntax and semantics

Sentence Syntax

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | Symbol

Symbol $\rightarrow P \mid Q \mid R \mid ...$ ComplexSentence $\rightarrow \neg$ Sentence

| (Sentence ∧ Sentence)

| (Sentence v Sentence)

| (Sentence ⇒ Sentence)

| (Sentence ⇔ Sentence)

BNF (Backus-Naur Form) grammar

Semantics

- Defines an interpretation for symbols in the logic
- Example:
 - Sentence " D_X " interpreted as fact that there is dirt in room X.
 - Sentence is true if, in the real world, there actually is dirt in room X.
- □ Model (aka possible world)
 - Specifies truth or falsity of every sentence

Logical Connectives

□ Given boolean value(s), compute a new boolean value.

□ Think: digital logic gates!

Logical Connectives: ¬

□ Standard boolean "NOT"

А	¬ A
0	1
1	0

Logical Connectives: A

□ Standard boolean "AND"

А	В	АлВ
0	0	0
0	1	0
1	0	0
1	1	1

Logical Connectives: v

- □ Standard boolean "OR"
- Not Exclusive

А	В	A v B
0	0	0
0	1	1
1	0	1
1	1	1

Remembering A vs. v

- □ Helpful mnemonics:
- □ ∧ looks like "A" for "And"
- □ v looks like "V" for "Vel"
- □ Imagine rain falling from above:
 - \square v collects more \rightarrow OR
 - $\square \land \text{ collects less} \rightarrow \text{AND}$

Logical Connectives: ⇒

- \square Implication: A \Rightarrow B
- \square NOT the same as entailment, $A \models B$
- □ Note behavior when ¬A

А	В	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Logical Connectives: \Rightarrow

- □ Implication: $A \Rightarrow B$
- □ Equivalent expression?

Α	В	A ⇒ B
0	0	1
0	1	1
1	0	0
1	1	1

Logical Connectives: ⇔

- $\hfill\Box$ Biconditional A $\Leftrightarrow B$
 - True if $A \Rightarrow B$ and $B \Rightarrow A$

А	В	A ⇔ B
0	0	1
0	1	0
1	0	0
1	1	1

Five Logical Connectives

P	Q	¬P (not)	PAQ (and)	PvQ (or)	P⇒Q (implies)	P⇔Q (if and only if)
false	false	1	0	0	1	1
false	true	1	0	1	1	0
true	false	0	0	1	0	0
true	true	0	1	1	1	1

Return of the Wumpus

□ We can now encode the rules of the game!

"The Wumpus emits a stench that can be detected from adjacent cells"

(right?)

$$\square S_{x,y} \Leftrightarrow W_{x-1,y} \vee W_{x+1,y} \vee W_{x,y-1} \vee W_{x,y+1}$$

Order of Operations

- \square What does $\neg A \land B \lor C$ mean?
 - 1. ¬((A∧B)vC)
 - 2. ¬(A∧(B∨C))
 - 3. ((¬ A)∧B)∨C
 - 4. (¬(A∧B))vC
- □ Always safe to use extra parentheses!
- □ Otherwise, order of operations:
 - Highest to lowest

Properties of Sentences

- □ True or False:
 - Value of expression (with respect to a particular model)
- Valid:
 - True in all models
- Satisfiable:
 - True in some model
- Examples:
 - $\square D_X \vee \neg D_X$
 - $\square D_X \vee D_Y$
 - $\square D_X \wedge \neg D_X$

Knowledge Base

- KB is the set of all known true sentences for the actual world model.
 - Contains generalizations ("game rules") applicable to all instances of "Hunt the Wumpus"
 - Contains percepts applicable to the particular instance we're playing.

Entailment

- □ Suppose we want to know if W_{2,2} is true, given KB. (does KB ⊨ W_{2,2}?)
- We better make sure that there isn't a model satisfying KB but where W_{2,2} is false.
 - □ I.e., is $(KB \land (\neg W_{2,2}))$ unsatisfiable?
 - □ I.e., is $(\neg KB \lor W_{2,2})$ valid?
 - □ I.e., is $(KB \Rightarrow W_{2,2})$ valid?

А	В	A ⇒ B
0	0	1
0	1	1
1	0	0
1	1	1

■ How is that different from the value of (KB \Rightarrow W_{2.2})?

Entailment

- □ Relation between sentences, says whether one is implicit in other(s).
 - KB: a set of sentences
 - α: a sentence

$$KB \models \alpha$$

- KB entails α
- In every model of KB (i.e., a model in which KB is true), α is true.
- Truth of α is contained in KB.

Deduction Theorem

- □ Entailment and Implication are *different*, but are related to each other via the Deduction Theorem.
- Deduction Theorem:
 - For any sentences A and B:

$$((A \Rightarrow B) \text{ is valid}) \text{ iff}$$

$$A \models B$$

19

Implication vs. Entailment

□ Entailment: For all world models in which A is true, B is true. (A => B is *valid*).

$$A \Rightarrow B$$

□ Implication: Compute a boolean value as a function of A and B equal to $(\neg A \lor B)$. If $\neg A$, we're not saying anything about B.

Next Time

- Propositional Logic
 - More ways to manipulate our knowledge
 - Inference without enumerating all states