

Bayesian Inference Methods

2

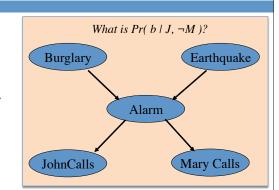
- □ Given some evidence, what is the probability of something happening?
 - Probability of a burglary given Mary calls.
 - Probability of an earthquake given there was no burglary.
 - What's the (marginal) probability of John calling?
- □ In General:
 - □ P(x | e)
- Many different algorithms...

Method 1: Enumeration

 Express desired conditional in terms of marginals

$$P(b|J,\neg M) = \frac{P(b,J,\neg M)}{P(J,\neg M)}$$

- Obtain marginals from joint distribution
 - Encoded in Bayes net!



$$\begin{split} P(B,E,A,J,M) &= P(B)P(E)P(A|BE)P(J|A)P(M|A) \\ P(b|J,\neg M) &= \frac{\sum_{E,A}P(b)P(E)P(A|bE)P(J|A)P(\neg M|A)}{\sum_{E,A,B}P(b)P(E)P(A|bE)P(J|A)P(\neg M|A)} \end{split}$$

Method 1: Enumeration

 $P(b|J,\neg M) = \frac{\sum_{E,A} P(b)P(E)P(A|bE)P(J|A)P(\neg M|A)}{\sum_{E,A,B} P(b)P(E)P(A|bE)P(J|A)P(\neg M|A)}$

- □ Given N nodes, how expensive is this?
 - Space?
 - O(N)
 - Complexity?
 - O(N2^N)
 - Possibly as many as 2^N terms, each involving the product of N conditional probabilities.

Improving Enumeration

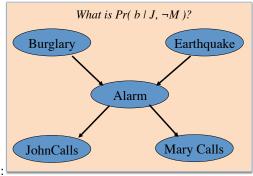
□ Moving summations inwards reduces complexity:

$$\Pr(J \mid b) = \alpha \sum_{e,a,m} \Pr(b) \Pr(e) \Pr(a \mid b,e) \Pr(J \mid a) \Pr(m \mid a)$$

$$= \alpha \Pr(b) \sum_{e} \Pr(e) \sum_{a} \Pr(a \mid b, e) \Pr(J \mid a) \sum_{m} \Pr(m \mid a)$$

"Barren" Nodes

- Observation:
 - Only ancestors of X or E are relevant to query.
- Example:
 - Question: Pr(J|b)
 - Answer: M not relevant.



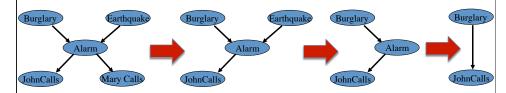
Can also be seen from the joint:

$$\Pr(J \mid b) = \alpha \sum_{e,a,m} \Pr(b) \Pr(e) \Pr(a \mid b,e) \Pr(J \mid a) \Pr(m \mid a)$$

$$= \alpha \Pr(b) \sum_{e} \Pr(e) \sum_{a} \Pr(a \mid b, e) \Pr(J \mid a) \sum_{m} \Pr(m \mid a)$$

Method 2: Variable Elimination

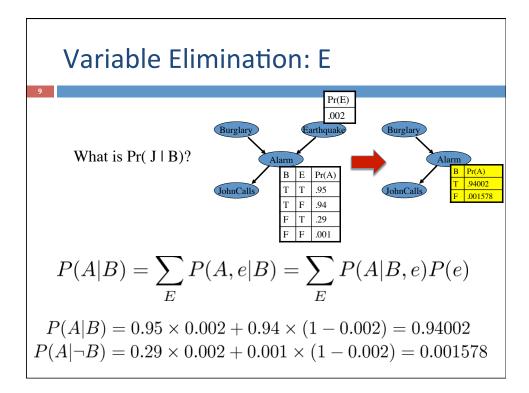
- Systematically remove all nodes in the graph that aren't part of our desired probability.
 - What is Pr(J | B)? Idea:

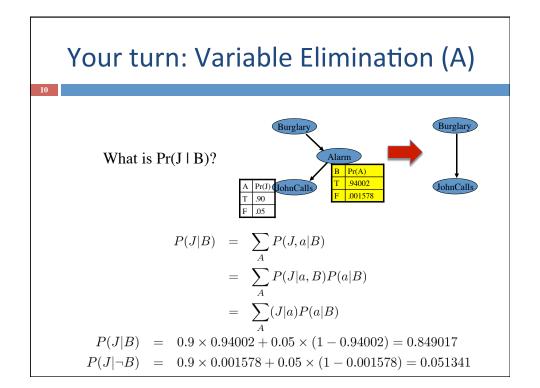


- What's the term for summing over a variable in order to make its value irrelevant?
 - Marginalization

Variable Elimination: M

- □ Step 1: Eliminate M
- M is irrelevant (as we described before). We can just delete it.





Variable Elimination

11

Does the order in which we eliminate variables matter?

- Complexity
 - Space?
 - O(2^N): we might have to store an enormous CPT if everything becomes dependent.
 - Complexity?
 - O(2^N): Could have to build a mega CPT with 2^N entries.

Exploiting Problem Structure

12

- Our next method exploits the structure of some Bayes nets....
 - Very similar to the way we exploited tree structures in CSP!

13

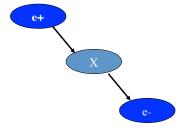
We want:

$$P(x|e^+,e^-)$$

$$P(x|e^+, e^-) = \frac{P(e^+, e^-|x)P(x)}{P(e^+, e^-)}$$
$$P(x|e^+, e^-) = \frac{P(e^+|x)P(e^-|x)P(x)}{P(e^+, e^-)}$$

$$P(x|e^+, e^-) = \frac{P(x|e^+)P(e^+)}{P(x)} \frac{P(e^+|x)P(e^-|x)P(x)}{P(e^+, e^-)}$$

 $P(x|e^+,e^-) \propto P(x|e^+)P(e^-|x)$



Interpretation: message passing

What if it's a bit more complex?

We (still) want:

$$P(x|e^+,e^-)$$

$$P(x|e^+, e^-) \propto P(x|e^+)P(e^-|x)$$

How do we compute P(x|e+)?

$$P(x|e^+) = \sum_{A} P(x, a|e^+)$$
$$P(x|e^+) = \sum_{A} P(a|e^+)P(x|a, e^+)$$

$$P(x|e^{+}) = \sum_{A} P(a|e^{+})P(x|a,e^{+})$$

$$P(x|e^+) = \sum_A P(a|e^+)P(x|a)$$

Another example

We (still) want:

$$P(x|e^+, e^-)$$

$$P(x|e^+, e^-) \propto P(x|e^+)P(e^-|x)$$

How do we compute P(e-|x)?

$$P(e^-|x) = \sum_{x} P(e^-, a|x)$$

$$P(e^{-}|x) = \sum_{A}^{A} P(e^{-}|a,x)P(a|x)$$

$$P(e^{-}|x) = \sum_{A} P(e^{-}, a|x)$$

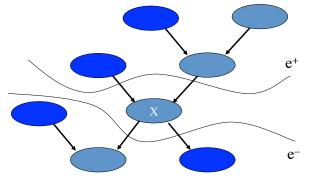
$$P(e^{-}|x) = \sum_{A} P(e^{-}|a, x)P(a|x)$$

$$P(e^{-}|x) = \sum_{A} P(e^{-}|a)P(a|x)$$

General Case

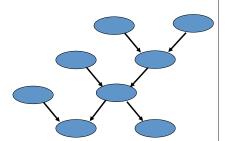
- Can partition evidence into causal and evidential support
- \square Pr(X | e) = Pr(X | e⁺,e⁻)

Local messagepassing algorithm implements recursive computation of evidence contribution in linear time



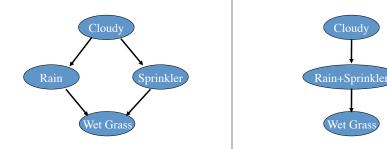
General Case: Pearl's Algorithm

- At most one undirected path between any pair of nodes
 - Why are loops bad?
- Can pass messages for inference O(N) time



Clustering

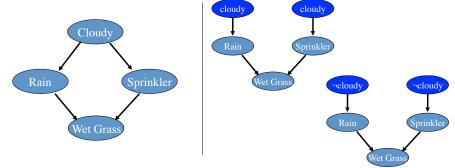
Convert multiply connected network to polytree, then solve



May entail exponential blowup

Cutset Conditioning

Identify set of variables (cutset) that would render network singly connected



May entail exponential time for conditioning

Complexity of BN Algorithms

Method	Applicability	Space	Time
Enumeration	general	O(n)	$O(n2^n)$
Variable elimination	general	$O(2^n)$	$O(2^n)$
Local propagation	polytrees	O(n)	$\mathrm{O}(n)$
Clustering	general	$O(2^n)$	$O(2^n)$
Conditioning	general	O(n)	$O(2^n)$

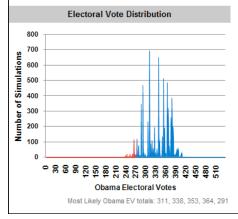
Approximate Inference

21

- □ So far, we've dealt with *exact* inference methods.
 - □ Don't always need exact!
- Approximate inference methods can quickly yield useful and interesting results!

Approximate Inference: Sampling

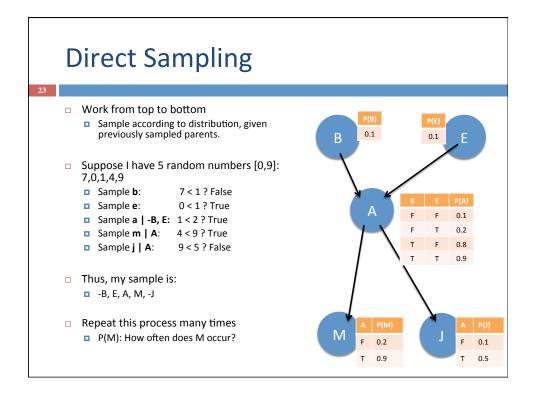
- □ Generate scenarios according to joint distribution
- □ Answer queries according to frequency in sample

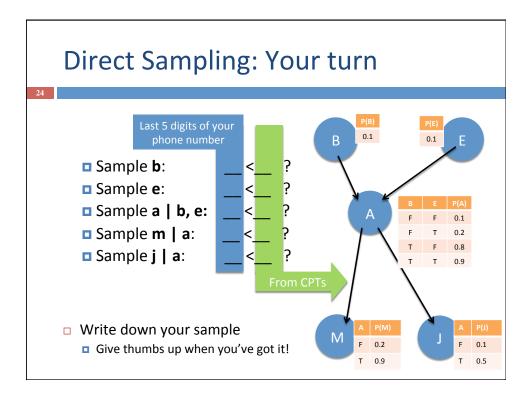


from FiveThirtyEight.com, 3 Nov 08

Electoral College TIE	0.21%	(21 of 10000)
Recount (one or more decisive states <=0.5%)	2.46%	(246 of 10000)
Obama wins Popular Vote	96.40%	(9640 of 10000)
McCain wins Popular Vote	3.60%	(360 of 10000)
Obama loses Popular Vote, wins Electoral Vote	1.02%	(102 of 10000)
McCain loses Popular Vote, wins Electoral Vote	1.11%	(111 of 10000)
Obama loses Popular Vote >=3%, wins election	0.00%	(0 of 10000)
McCain loses Popular Vote >=3%, wins election	0.00%	(0 of 10000)
Obama landslide (375+ EV)	23.68%	(2368 of 10000)
McCain landslide (375+ EV)	0.00%	(0 of 10000)

Scenario Analysis





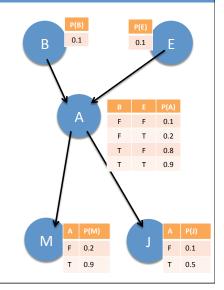
Direct Sampling

□ How often does M occur?

$$P(M) \approx \frac{N_M}{N_{total}}$$

How do we incorporate evidence?

$$P(M|\neg E)$$



Rejection Sampling

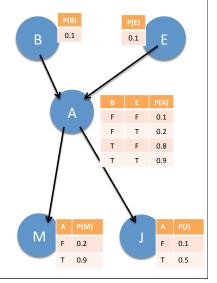
How do we answer:

$$P(M|\neg E)$$

- Idea: discard samples where E=true, then compute statistics.
 - How many samples will be rejected?

$$P(M|\neg E) = \frac{P(M, \neg E)}{P(\neg E)}$$

- □ How many of you have –E?
- How many of you have M^-E?

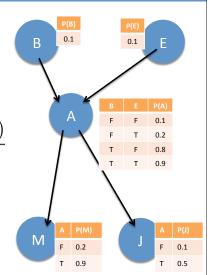


□ Okay, how about:

□ How do we compute this?

$$P(J|B,M) = \frac{P(J,B,M)}{P(B,M)}$$

- □ How many of you have B^M?
- □ How many of you have JBM?
- What happened?



Rejection Sampling

Suppose we want to estimate Pr(X|e)?

Scenario Analysis				
Electoral College TIE	0.21%	(21 of 10000)		
Recount (one or more decisive states <=0.5%)	2.46%	(246 of 10000)		
Obama wins Popular Vote	96.40%	(9640 of 10000)		
McCain wins Popular Vote	3.60%	(360 of 10000)		
Obama loses Popular Vote, wins Electoral Vote	1.02%	(102 of 10000)		
McCain loses Popular Vote, wins Electoral Vote	1.11%	(111 of 10000)		
Obama loses Popular Vote >=3%, wins election	0.00%	(0 of 10000)		
McCain loses Popular Vote >= 3%, wins election	0.00%	(0 of 10000)		
Obama landslide (375+ EV)	23.68%	(2368 of 10000)		
McCain landslide (375+ EV)	0.00%	(0 of 10000)		
Obama loses OH, wins election	81.91%	(1639 of 2001)		
McCain loses OH, wins election	0.01%	(1 of 7999)		
Obama loses OH/FL, wins election	79.15%	(1374 of 1736)		
McCain loses OH/FL, wins election	0.00%	(0 of 7994)		
Obama loses OH/FL/PA, wins election	7.94%	(15 of 189)		
McCain loses OH/FL/PA, wins election	0.00%	(0 or 6183)		
Obama wins all Kerry states	97.38%	(9738 of 10000)		
McCain wins all Bush states	0.01%	(1 of 10000)		
Obama wins VA when losing OH	71.26%	(1426 of 2001)		
Obama wins FL when losing OH	13.24%	(265 of 2001)		
Obama wins CO when losing OH	81.26%	(1626 of 2001)		
Obama wins OH when losing PA	2.56%	(5 of 195)		

Rejection Sampling: Summary

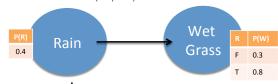
29

- Rejection sampling is an easy way to do inference, however:
 - As conditional becomes more rare, accuracy rapidly falls.
- □ Is there a better way?
 - Yes! Likelihood weighting!

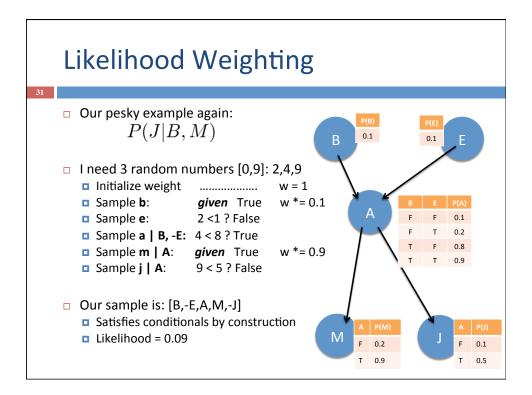
Likelihood Weighting

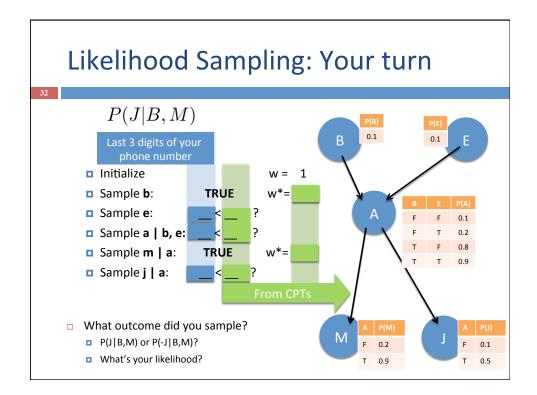
30

- □ Idea: ensure that evidence values are satisfied during the sampling process.
 - If evidence node has no parents, just set the value.
 - What do we do if an evidence node has parents?
 - Let's consider P(R|W)



- □ To draw samples:
 - Sample from Rain as usual (suppose we sample 'true').
 - Now, must force W=true. How likely was this outcome?
 - Count this sample as 0.8 of a sample.





Likelihood Weighting: Your turn

33

P(J|B,M)

□ Did we get a better estimate?

Probability	Sum of likelihoods
P(J B,M)	
$P(\neg J B,M)$	

How many samples do I need?

34

- Or equivalently, what's the variance associated with my estimate?
- Let's consider rejection sampling (simpler math)
 - N accepted samples
 - Each has some unknown variance
 - If p is actual answer, variance of samples is p(1-p)
 - Maximum possible value when p=0.5: σ^2 =0.25
 - We're summing N of them
 - Variance of sum: No²
 - Then we divide by N (which scales variance as 1/N²)
 - Variance of estimated probability goes as 1/(4N)
 - Which means that standard deviation goes as $\frac{1}{2\sqrt{N}}$

Sampling Review

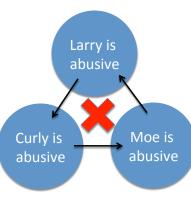
35

- Time Complexity?
 - O(S): Linear in the number of samples
 - Need more samples when evidence is rare!
 - Likelihood sampling helps, but doesn't solve, the problem.
- Space Complexity?
 - O(1)
- Simple and easy-to-implement methods
 - If you don't need exact answers, a very good thing to try!
- □ Also read in the book about Markov Chain Monte Carlo approach!

Limitations (?) of Bayes Nets

36

- Directional edges
 - Joint distribution = product of conditional distributions
- Cycles not permitted
 - Not required for expressivity
 - But sometimes it'd be more natural...
- Computing dependencies is a bit tricky



Cycles are not permitted in Bayes nets

Markov Random Fields A different approach Makes some problems easier to specify Larry is abusive Undirected edges ■ Joint distribution = product of potential functions ■ Potential functions: functions of Curly is Moe is one or more variables. abusive abusive ■ We'll get more specific later. Cycles permitted Cycles are permitted in Markov Random Fields Dependencies are easy...