3

Start State Goal State

Informed Search

EECS 492
January 19, 2010

Administrative

N
o PS1 due Thursday!

o My office hours moved to today

1/19/2011

1/19/2011

Last Time: Uniformed Search

4 |
o General-Purpose

o Require only the problem definition itself:
= state,
m successors(state)
| is-goal(state)
® cost(path)

o Powerful

o Several Complete and Optimal algorithms to choose
from!

Analysis Summary
N

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes No No Yes
Optimal? Yes Yes No No Yes
Time O(bd) ObC=ry O™ O(bLh) O(b9)
complexity

\
Space O(bd) O(bC™et! O(bm) O(bL) O(bd) >
compexity

— |
Exponéntial in depth! Linear in depth!

1/19/2011

Uninformed Search

5P|
o All we have is:

o problem = {state,, is-goal(), cost(), successors() }

o We have no idea how well we’re doing until we
suddenly find a goal!

Informed Search
[]

o1 We still need to know the problem

o problem = {state,, is-goal(), cost(),
successors() }

o1 We get some additional information at
each node

o “Hot” or “Cold”

o Which states are better than others?
o Information about distance to goal

o Formulate as a real-valued metric:
f(node).

1/19/2011

Informed Search

4 |
o Exploit additional information of () such that:
o We find the goal faster when f() is accurate

o With the right algorithm:

o We still (eventually) find a goal when f() is wrong

o We can find the optimal goal if f() is only wrong in
certain ways!

m Generally easy to satisfy conditions too!

Best-First Search

o It’s really just TreeSearch again, except we allow more
types of Queue-Get functions

0 For each node, define an evaluation function f(node).
o Having f() is how we “inform” the search!

o Queue-Get: Expand the node with the smallest value of f()

o Watch out for “BFS”

o Breadth-first search or best-first search?

Greedy Search

o Simple informed search with f() = cost-to-go(n)

o Complete?

o Optimal?

Greedy Search: Example

o Queue-Get: returns the node with minimum f(n)=cost-to-go(n)

o Assume we avoid repeated states.

A(8)

Expand A:
AB(7)
Al(9)

Expand AB:
ABC (6)
Al(9)

Expand ABC:
ABCD (5)
Al(9)

Expand ABCD:
ABCDE (4)
Al(9)

Expand ABCDE:

(dead end)
Al (9)

Expand Al:
Al*

1/19/2011

1/19/2011

It’s a Best-First Search!

Thrilling. Yet Another TreeSearch. What's
Queue-Get this time?

Glad you asked! Queue-Get returns the
node with

the minimum value of:

f(n) = cost-so-far(n) + h(n),
where h(n) has some special properties.

What'’s it good for?

A*
4 |
o Provided the heuristic is admissible:
o A* is complete
o A* is optimal
o A* is optimally efficient

Optimally Efficient?

No algorithm can expand fewer
nodes than A* and still be

guaranteed to find the optimal
answer.

1/19/2011

A*: Admissible heuristics
N e

o Admissible:

h(n) <= the minimum achievable cost

from n to the goal.

A*: Proof of Optimality
N

o Strategy:
o Let C* be cost of optimal solution
o Show that a node on the path to the optimal solution will always be
selected for expansion before a sub-optimal goal node.
m Eventually, that node will be the goal node and we’ll be done.

o Proof

o Suppose a suboptimal goal G’ in a node on fringe
m G’ is suboptimal <> g(G’) > C*
m f(G")=g(G’)+h(G’)
u f(G’) > C*.

o There must be a node n on fringe that is on optimal path, and because
h(n) can’t overestimate, f(n) < C*

o Since f(n) < f(G’), we'll expand n before G'.

1/19/2011

Admissible Heuristics

. J |
o Objectives:
1. Accurate estimate of distance to goal
2. Never overestimate (admissible)
3. Easy to compute
o Approaches:
o Just think of something
o Relax constraints
o Learn from experience

A*: Example
[|

Saginaw

Niagara Falls

Kalamazoo

108

64

South Bend 150

1L Pittsburgh

Mansfield

What’s a good heuristic?

1/19/2011

A*: Example
[

Saginaw(327)
36

Grand Rapids(396) Flint(294)

Niagara Falls(170)
51

75
Kalamazoo(372)

98 Ann Arbor(265) 108

64 42

South Bend(399) 150 120

Bowling Green(240)

66
1 o
Akron(105) Pittsburgh(0)

Mansfield(174)

A* Example: Solution
N

1: {AA(265)}
3: { AA-D(269), AA-T(279), AA-K (470)}
7: { AA-T(279), AA-D-T(323), AA-D-AA(341), AA-D-F(391), AA-D-N(451), AA-D-L (456),AA-K(470) }

11: { AA-T-C(288), AA-T-B(298), AA-T-D(321), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451),
AA-D-L(456), AA-K(470), AA-T-SB(591) }

12: { AA-T-B(298), AA-T-C-A(303), AA-T-D(321), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451),
AA-D-L(456),AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

13: { AA-T-C-A(303), AA-T-B-T(311), AA-T-D(321), AA-T-B-M(322), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391),
AA-D-N(451), AA-D-L(456),AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

15: { AA-T-C-A-P(309), AA-T-B-T(311), AA-T-D(321), AA-T-B-M(322), AA-D-T(323), AA-T-C-A-C(366), AA-D-AA(341),
AA-T-AA(349), AA-D-F(391), AA-T-C-A-M(444) , AA-D-N(451), AA-D-L(456), AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

Your turn!

. J |
o 1. Which algorithm do we get if we do Best First
Search (BFS) with:

mA.
m B.
mC.
mD.
mE.

mF

f() = num-actions(node)

f() = cost-so-far(node)

f() = cost-to-go(node)

f() = cost-so-far(node) + cost-to-go(node)
f() = time-in-fringe(node)

f() = -time-in-fringe(node)

Graph Search and A*

N
0 Tree search A* has same problem as other tree
searches... (what problem is it?)
o Can re-expand same states many times over.

o Graph Search was the answer...

o Don’t add paths to the fringe when we already know
how to get to that state.

1/19/2011

10

1/19/2011

Graph Search A*

4 |
o Use GraphSearch/A* A(10)

AB (12)
AC (7)

AB (12)
ACA-{16}
ACD (18)

ABA{14}
ABD-{14)
ACD (18)

ACDE (23)

Sub-optimal!
(why did this happen?)

A stronger heuristic: Consistency

I
o Admissibility
o h(n) <= true cost from n to goal

o Consistency (Monotonicity)
o h(n) <=c(n, n’) + h(n’)
o (Implies admissibility. Why?)
m h(n)<=c(n, n’)+[c(n’, n”)+h(n”)]

o A* optimal if:

o Tree: h() is admissible
o Graph search: h() is consistent

11

1/19/2011

Consistency

5P|
o0 Where is this function non-consistent?

o Consistency property: h(n) <=c(n, a, n’) + h(n’)

Consistency and Tree Search

N
o Why don’t we need consistency for tree search?

12

Constructing Admissible Heuristic’

[
o Relax constraints

o Sub-problems

o Pattern databases

Generating Heuristics by Relaxation

Calculate exact distance for relaxed version of

problem G oo
AN Omana
OB amaRn

Start State

Allow tile to be “teleported” to destination

h1l: #misplaced tiles

Goal State

Allow move to adjacent square even if occupied

h2: Manhattan distance

1/19/2011

13

Generating heuristics with sub-problems

4 |
o hs(n) = How many moves to get tiles 1-4 into the
correct position?

o h,(n) = How many moves to get tiles 5-8 into the
correct position?

FEE L
CITE CIEE
oonjoao

Pattern Database
[]

o Stanford Parking Planner
o Precompute distance to adjacent cells assuming no obstacles

e

1/19/2011

14

1/19/2011

Admissible Heuristics

. J |
o Which heuristic is better?
o The one that produces the larger values.

0 Are there admissible h;, h, such that
hy(n) > hy(ng) and hy(n) < hy(n)?

o Domination
o h,(n) >=h,(n) for all n.

Combining Multiple Heuristics

I
0 Suppose we have multiple admissible heuristics.
o What is the optimal combination of them?

0 What if the heuristics are disjoint?

o l.e., progress on one heuristic can not affect progress
of another heuristic

15

1/19/2011

Inadmissible Heuristics

o Learning heuristics based on features
o H(n) = Ax(n) + By(n)
o Where A,B are parameters fit to observed data.

o Are these useful?

A*: Not a panacea

o Avoiding exponential search size requires heuristic
error to grow no faster than log(cost)

0 This is hard to do: error often proportional to cost.
o Consider: Straight-line distance?

o Otherwise, memory/CPU are O(b")

o Memory will generally be the limiting problem
o Sound familiar?

16

1/19/2011

A*

[l Goal

Start

Recursive Best First Search (RBFS)
N

o RBFS is a scheme to reduce the memory requirements

o Each node knows the f() of the best alternative path from one of its
ancestors

o If the current f() value exceeds this limit, we unwind back to the
common ancestor, then re-expand the tree down the alternate path.

o Two (or more) paths can wrestle control back and forth:
o Constantly re-expanding nodes

o Space:
o O(d)

17

1/19/2011

RBFS Example

IDA*

o IDA* is a scheme to reduce the memory requirements

o Virtually identical to IDS:
o Instead of Depth-Limited Search, use f()-limited search

o Upon failure, f()-limit is increased to the lowest f() value
that was previously pruned.

o Time:

o O(b</e)
0o Space:

o O(bd)

18

1/19/2011

SMA*

. J
o RBFS and IDA* suffer from using too little memory.

o ldea: Remember as much of the search tree as we can.
(Delay the onset of thrashing as long as we can!)

o 1. When the queue is not too big
m Expand the leaf in the search tree with the minimum f()
o 2. When memory runs out:

m Find the leaf in the search tree whose f() is the worst and remove
it.

m Back up its f() to its parent. Note that the parent might now
become a leaf

Next time

]
o Local Search

19

