

Administrative

- PS1 due Thursday!
- My office hours moved to today

Last Time: Uniformed Search

General-Purpose

- **Require only the problem definition itself:**
 - state₀
 - successors(state)
 - is-goal(state)
 - cost(path)

Powerful

Several Complete and Optimal algorithms to choose from!

Analysis Summary

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes	Yes	No	No	Yes
Optimal?	Yes	Yes	No	No	Yes
Time complexity	$O(b^{d+1})$	$O(b^{C^{*/\epsilon+1}})$	O(b ^m)	$O(b^L)$	O(b ^d)
Space compexity	O(b ^{d+1})	$O(b^{C*/\varepsilon+1})$	O(bm)	O(bL)	O(bd)
Exponenti	ial in depth!			Line	ear in depth!

Uninformed Search

```
All we have is:
```

problem = {state₀, is-goal(), cost(), successors() }

We have no idea how well we're doing until we suddenly find a goal!

Informed Search

- We still need to know the problem
 problem = {state₀, is-goal(), cost(), successors() }
- We get some additional information at each node
 - "Hot" or "Cold"
 - Which states are better than others?
 - Information about distance to goal
 - Formulate as a real-valued metric: f(node).

Informed Search

Exploit additional information of f() such that:
 We find the goal faster when f() is accurate

□ With the right algorithm:

- We still (eventually) find a goal when f() is wrong
- We can find the *optimal* goal if f() is only wrong in certain ways!
 - Generally easy to satisfy conditions too!

Best-First Search

- It's really just TreeSearch again, except we allow more types of Queue-Get functions
- □ For each node, define an *evaluation function* f(node).
 - Having f() is how we "inform" the search!
 - Queue-Get: Expand the node with the smallest value of f()
- Watch out for "BFS"
 - Breadth-first search or best-first search?

Greedy Search

Simple informed search with f() = cost-to-go(n)

Complete?

Optimal?

Greedy Search: Example

A*

- □ Provided the heuristic is *admissible*:
 - A* is complete
 - A* is optimal
 - A* is optimally efficient

Optimally Efficient?

No algorithm can expand fewer nodes than A* and still be guaranteed to find the optimal answer.

A*: Admissible heuristics

Admissible:

h(n) <= the minimum achievable cost from n to the goal.

A*: Proof of Optimality

- Strategy:
 - Let C* be cost of optimal solution
 - Show that a node on the path to the optimal solution will always be selected for expansion before a sub-optimal goal node.
 - Eventually, that node will be the goal node and we'll be done.

Proof

- □ Suppose a suboptimal goal G' in a node on fringe
 - G' is suboptimal $\leftarrow \rightarrow g(G') > C^*$
 - f(G')=g(G')+h(G')
 - f(G') > C*.
- There must be a node n on fringe that is on optimal path, and because h(n) can't overestimate, f(n) < C*</p>
- Since f(n) < f(G'), we'll expand n before G'.

Admissible Heuristics

- Objectives:
 - 1. Accurate estimate of distance to goal
 - 2. Never overestimate (admissible)
 - 3. Easy to compute
- Approaches:
 - Just think of something
 - Relax constraints
 - Learn from experience

A*: Example

What's a good heuristic?

A*: Example

A* Example: Solution

1: {AA(265)}

3: { AA-D(269), AA-T(279), AA-K(470)}

7: { AA-T(279), AA-D-T(323), AA-D-AA(341), AA-D-F(391), AA-D-N(451), AA-D-L(456), AA-K(470) }

11: { **AA-T-C(288), AA-T-B(298), AA-T-D(321),** AA-D-T(323), AA-D-AA(341), **AA-T-AA(349)**, AA-D-F(391), AA-D-N(451), AA-D-L(456), AA-K(470), **AA-T-SB(591)** }

12: { AA-T-B(298), **AA-T-C-A(303)**, AA-T-D(321), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451), AA-D-L(456), AA-K(470), **AA-T-C-T(513)**, AA-T-SB(591) }

13: { AA-T-C-A(303), **AA-T-B-T(311)**, AA-T-D(321), **AA-T-B-M(322)**, AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451), AA-D-L(456), AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

15: { **AA-T-C-A-P(309**), AA-T-B-T(311), AA-T-D(321), AA-T-B-M(322), AA-D-T(323), **AA-T-C-A-C(366)**, AA-D-AA(341), AA-T-AA(349), AA-D-F(391), **AA-T-C-A-M(444)**, AA-D-N(451), AA-D-L(456), AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

Your turn!

- 1. Which algorithm do we get if we do Best First Search (BFS) with:
 - A. f() = num-actions(node)
 - B. f() = cost-so-far(node)
 - C. f() = cost-to-go(node)
 - D. f() = cost-so-far(node) + cost-to-go(node)
 - E. f() = time-in-fringe(node)
 - F. f() = -time-in-fringe(node)

Graph Search and A*

- Tree search A* has same problem as other tree searches... (what problem is it?)
 - Can re-expand same states many times over.
- □ Graph Search was the answer...
 - Don't add paths to the fringe when we already know how to get to that state.

Graph Search A*

A stronger heuristic: Consistency

Admissibility

- h(n) <= true cost from n to goal</p>
- Consistency (Monotonicity)
 - h(n) <= c(n, n') + h(n')</p>
 - (Implies admissibility. Why?)
 h(n) <= c(n, n') + [c(n', n'') + h(n'')]
- A* optimal if:
 - Tree: h() is admissible
 - Graph search: h() is consistent

Consistency

□ Where is this function non-consistent?

□ Consistency property: $h(n) \le c(n, a, n') + h(n')$

Consistency and Tree Search

□ Why *don't* we need consistency for tree search?

Relax constraints

- Sub-problems
- Pattern databases

Generating Heuristics by Relaxation

Calculate exact distance for *relaxed* version of problem

7	2	4		1	2
5		6	3	4	5
8	3	1	6	7	8
s	tart State		 	Goal State	

Allow tile to be "teleported" to destination h1: #misplaced tiles Allow move to adjacent square even if occupied h2: Manhattan distance

Generating heuristics with sub-problems

- h₃(n) = How many moves to get tiles 1-4 into the correct position?
- h₄(n) = How many moves to get tiles 5-8 into the correct position?

7	2	4		1	2
5		6	3	4	5
8	3	1	6	7	8
Start State			 _	Goal State	

Pattern Database

Stanford Parking Planner

Precompute distance to adjacent cells assuming no obstacles

Admissible Heuristics

- Which heuristic is better?The one that produces the larger values.
- □ Are there admissible h_1 , h_2 such that $h_1(n_i) > h_2(n_i)$ and $h_1(n_j) < h_2(n_j)$?

Domination
 h₁(n) >= h₂(n) for all n.

Combining Multiple Heuristics

- Suppose we have multiple admissible heuristics.
 What is the optimal combination of them?
- What if the heuristics are disjoint?
 - I.e., progress on one heuristic can not affect progress of another heuristic

Inadmissible Heuristics

Learning heuristics based on features

 $\square H(n) = Ax(n) + By(n)$

- □ Where A,B are parameters fit to observed data.
- Are these useful?

A*: Not a panacea

- Avoiding exponential search size requires heuristic error to grow no faster than log(cost)
- This is hard to do: error often proportional to cost.
 Consider: Straight-line distance?
- Otherwise, memory/CPU are O(bⁿ)
 - Memory will generally be the limiting problem
 - Sound familiar?

A*

Recursive Best First Search (RBFS)

- RBFS is a scheme to reduce the memory requirements
- Each node knows the f() of the best alternative path from one of its ancestors
 - If the current f() value exceeds this limit, we unwind back to the common ancestor, then re-expand the tree down the alternate path.
- Two (or more) paths can wrestle control back and forth:
 Constantly re-expanding nodes
- □ Space:

O(d)

RBFS Example

IDA*

- □ IDA* is a scheme to reduce the memory requirements
- □ Virtually identical to IDS:
 - □ Instead of Depth-Limited Search, use f()-limited search
 - Upon failure, f()-limit is increased to the lowest f() value that was previously pruned.
- □ Time:

O(b^{C*/e})

Space:O(bd)

SMA*

- □ RBFS and IDA* suffer from using too *little* memory.
- Idea: Remember as much of the search tree as we can. (Delay the onset of thrashing as long as we can!)
 - 1. When the queue is not too big
 - Expand the leaf in the search tree with the minimum f()
 - **2**. When memory runs out:
 - Find the leaf in the search tree whose f() is the worst and remove it.
 - Back up its f() to its parent. Note that the parent might now become a leaf

Next time

Local Search