
1/19/2011

1

Informed Search
EECS 492

January 19th, 2010

Administrative

 PS1 due Thursday!

 My office hours moved to today

1/19/2011

2

Last Time: Uniformed Search

 General-Purpose
 Require only the problem definition itself:
 state0

 successors(state)

 is-goal(state)

 cost(path)

 Powerful
 Several Complete and Optimal algorithms to choose

from!

Analysis Summary

Criterion Breadth-

First

Uniform-

Cost

Depth-

First

Depth-

Limited

Iterative

Deepening

Complete? Yes Yes No No Yes

Optimal? Yes Yes No No Yes

Time

complexity

O(bd+1) O(bC*/+1) O(bm) O(bL) O(bd)

Space

compexity

O(bd+1) O(bC*/+1) O(bm) O(bL) O(bd)

Linear in depth!Exponential in depth!

1/19/2011

3

Uninformed Search

 All we have is:

 problem = {state0, is-goal(), cost(), successors() }

 We have no idea how well we’re doing until we
suddenly find a goal!

Informed Search

 We still need to know the problem
 problem = {state0, is-goal(), cost(),

successors() }

 We get some additional information at
each node
 “Hot” or “Cold”
 Which states are better than others?
 Information about distance to goal

 Formulate as a real-valued metric:
f(node).

1/19/2011

4

Informed Search

 Exploit additional information of f() such that:

We find the goal faster when f() is accurate

 With the right algorithm:

We still (eventually) find a goal when f() is wrong

We can find the optimal goal if f() is only wrong in
certain ways!

 Generally easy to satisfy conditions too!

Best-First Search

 It’s really just TreeSearch again, except we allow more
types of Queue-Get functions

 For each node, define an evaluation function f(node).

 Having f() is how we “inform” the search!

 Queue-Get: Expand the node with the smallest value of f()

 Watch out for “BFS”

 Breadth-first search or best-first search?

1/19/2011

5

Greedy Search

 Simple informed search with f() = cost-to-go(n)

 Complete?

 Optimal?

Greedy Search: Example

 Queue-Get: returns the node with minimum f(n)=cost-to-go(n)

 Assume we avoid repeated states.

A

B

C

D E
I

Start

Goal

A (8)

Expand A:
AB (7)
AI (9)

Expand AB:
ABC (6)
AI (9)

Expand ABC:
ABCD (5)
AI (9)

Expand ABCD:
ABCDE (4)
AI (9)

Expand ABCDE:
(dead end)
AI (9)

Expand AI:
AI*

1/19/2011

6

A*

Thrilling. Yet Another TreeSearch. What’s
Queue-Get this time?

It’s a Best-First Search!

Glad you asked! Queue-Get returns the
node with

the minimum value of:

f(n) = cost-so-far(n) + h(n),
where h(n) has some special properties.

What’s it good for?

A*

 Provided the heuristic is admissible:

 A* is complete

 A* is optimal

 A* is optimally efficient

Optimally Efficient?

No algorithm can expand fewer
nodes than A* and still be

guaranteed to find the optimal
answer.

1/19/2011

7

A*: Admissible heuristics

 Admissible:

h(n) <= the minimum achievable cost
from n to the goal.

A*: Proof of Optimality

 Strategy:
 Let C* be cost of optimal solution
 Show that a node on the path to the optimal solution will always be

selected for expansion before a sub-optimal goal node.
 Eventually, that node will be the goal node and we’ll be done.

 Proof
 Suppose a suboptimal goal G’ in a node on fringe

 G’ is suboptimal g(G’) > C*
 f(G’)=g(G’)+h(G’)
 f(G’) > C*.

 There must be a node n on fringe that is on optimal path, and because
h(n) can’t overestimate, f(n) < C*

 Since f(n) < f(G’), we’ll expand n before G’.

1/19/2011

8

Admissible Heuristics

 Objectives:

1. Accurate estimate of distance to goal

2. Never overestimate (admissible)

3. Easy to compute

 Approaches:

 Just think of something

 Relax constraints

 Learn from experience

A*: Example

Saginaw

Detroit

Flint
Grand Rapids

Lansing

Ann Arbor

Kalamazoo

South Bend
Cleveland

Toledo

Bowling Green

Mansfield

Akron
Pittsburgh

68
51

75

98 38

88
59

36

50

117

39

111
66

42
4864

16
150

90

Niagara Falls

Erie

243

108

120

What’s a good heuristic?

Lake
Erie

1/19/2011

9

A*: Example

Saginaw(327)

Detroit(231)

Flint(294)
Grand Rapids(396)

Lansing(330)

Ann Arbor(265)

Kalamazoo(372)

South Bend(399)

Cleveland(129)

Toledo(237)

Bowling Green(240)

Mansfield(174)

Akron(105) Pittsburgh(0)

68
51

75

98 38

88
59

36

50

117

39

111
66

42
4864

16
150

90

Niagara Falls(170)

Erie(100)

243

108

120

A* Example: Solution

1: {AA(265)}

3: { AA-D(269), AA-T(279), AA-K(470)}

7: { AA-T(279), AA-D-T(323), AA-D-AA(341), AA-D-F(391), AA-D-N(451), AA-D-L(456),AA-K(470) }

11: { AA-T-C(288), AA-T-B(298), AA-T-D(321), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451),

AA-D-L(456), AA-K(470), AA-T-SB(591) }

12: { AA-T-B(298), AA-T-C-A(303), AA-T-D(321), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391), AA-D-N(451),

AA-D-L(456),AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

13: { AA-T-C-A(303), AA-T-B-T(311), AA-T-D(321), AA-T-B-M(322), AA-D-T(323), AA-D-AA(341), AA-T-AA(349), AA-D-F(391),

AA-D-N(451), AA-D-L(456),AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

15: { AA-T-C-A-P(309), AA-T-B-T(311), AA-T-D(321), AA-T-B-M(322), AA-D-T(323), AA-T-C-A-C(366), AA-D-AA(341),

AA-T-AA(349), AA-D-F(391), AA-T-C-A-M(444) , AA-D-N(451), AA-D-L(456), AA-K(470), AA-T-C-T(513), AA-T-SB(591) }

1/19/2011

10

Your turn!

 1. Which algorithm do we get if we do Best First
Search (BFS) with:

 A. f() = num-actions(node)

 B. f() = cost-so-far(node)

 C. f() = cost-to-go(node)

 D. f() = cost-so-far(node) + cost-to-go(node)

 E. f() = time-in-fringe(node)

 F. f() = -time-in-fringe(node)

Graph Search and A*

 Tree search A* has same problem as other tree
searches... (what problem is it?)

 Can re-expand same states many times over.

 Graph Search was the answer…

 Don’t add paths to the fringe when we already know
how to get to that state.

1/19/2011

11

Graph Search A*

 Use GraphSearch/A*

A
(10)

B
(10)

C
(4)

D
(5)

E
(0)

2

3 10

4

10

A (10)

AB (12)
AC (7)

AB (12)
ACA (16)
ACD (18)

ABA (14)
ABD (11)
ACD (18)

ACDE (23)

Sub-optimal!
(why did this happen?)

A stronger heuristic: Consistency

 Admissibility
 h(n) <= true cost from n to goal

 Consistency (Monotonicity)
 h(n) <= c(n, n’) + h(n’)
 (Implies admissibility. Why?)
 h(n) <= c(n, n’) + * c(n’, n’’) + h(n’’) +

 A* optimal if:
 Tree: h() is admissible
 Graph search: h() is consistent

1/19/2011

12

Consistency

 Where is this function non-consistent?
 Consistency property: h(n) <= c(n, a, n’) + h(n’)

A
(10)

B
(10)

C
(4)

D
(5)

E
(0)

2

3 10

4

10

Consistency and Tree Search

 Why don’t we need consistency for tree search?

1/19/2011

13

Constructing Admissible Heuristics

 Relax constraints

 Sub-problems

 Pattern databases

Generating Heuristics by Relaxation

Calculate exact distance for relaxed version of

problem

Allow tile to be “teleported” to destination

h1: #misplaced tiles

Allow move to adjacent square even if occupied

h2: Manhattan distance

1/19/2011

14

Generating heuristics with sub-problems

 h3(n) = How many moves to get tiles 1-4 into the
correct position?

 h4(n) = How many moves to get tiles 5-8 into the
correct position?

Pattern Database

 Stanford Parking Planner
 Precompute distance to adjacent cells assuming no obstacles

1/19/2011

15

Admissible Heuristics

 Which heuristic is better?

 The one that produces the larger values.

 Are there admissible h1, h2 such that
h1(ni) > h2(ni) and h1(nj) < h2(nj)?

 Domination

 h1(n) >= h2(n) for all n.

Combining Multiple Heuristics

 Suppose we have multiple admissible heuristics.

What is the optimal combination of them?

 What if the heuristics are disjoint?

 I.e., progress on one heuristic can not affect progress
of another heuristic

1/19/2011

16

Inadmissible Heuristics

 Learning heuristics based on features

 H(n) = Ax(n) + By(n)

Where A,B are parameters fit to observed data.

 Are these useful?

A*: Not a panacea

 Avoiding exponential search size requires heuristic
error to grow no faster than log(cost)

 This is hard to do: error often proportional to cost.

 Consider: Straight-line distance?

 Otherwise, memory/CPU are O(bn)

Memory will generally be the limiting problem

 Sound familiar?

1/19/2011

17

A*

Start

Goal

Recursive Best First Search (RBFS)

 RBFS is a scheme to reduce the memory requirements

 Each node knows the f() of the best alternative path from one of its
ancestors
 If the current f() value exceeds this limit, we unwind back to the

common ancestor, then re-expand the tree down the alternate path.

 Two (or more) paths can wrestle control back and forth:
 Constantly re-expanding nodes

 Space:
 O(d)

1/19/2011

18

RBFS Example

3 10

12 16 11 14

5

15 1713

IDA*

 IDA* is a scheme to reduce the memory requirements

 Virtually identical to IDS:
 Instead of Depth-Limited Search, use f()-limited search
 Upon failure, f()-limit is increased to the lowest f() value

that was previously pruned.

 Time:
 O(bC*/e)

 Space:
 O(bd)

1/19/2011

19

SMA*

 RBFS and IDA* suffer from using too little memory.

 Idea: Remember as much of the search tree as we can.
(Delay the onset of thrashing as long as we can!)

 1. When the queue is not too big
 Expand the leaf in the search tree with the minimum f()

 2. When memory runs out:
 Find the leaf in the search tree whose f() is the worst and remove

it.
 Back up its f() to its parent. Note that the parent might now

become a leaf

Next time

 Local Search

