Informed Search

Administrative

- PS1 due Thursday!

- My office hours moved to today
Last Time: Uniformed Search

- **General-Purpose**
 - Require only the problem definition itself:
 - \(state_0 \)
 - successors(\(state \))
 - is-goal(\(state \))
 - cost(path)

- **Powerful**
 - Several Complete and Optimal algorithms to choose from!

Analysis Summary

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time complexity</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{C^*/\varepsilon+1}))</td>
<td>(O(b^m))</td>
<td>(O(b^L))</td>
<td>(O(b^d))</td>
</tr>
<tr>
<td>Space complexity</td>
<td>(O(b^{d+1}))</td>
<td>(O(b^{C^*/\varepsilon+1}))</td>
<td>(O(bm))</td>
<td>(O(bL))</td>
<td>(O(bd))</td>
</tr>
</tbody>
</table>

Exponential in depth!
Linear in depth!
Uninformed Search

- All we have is:
 - problem = \{ state_0, is-goal(), cost(), successors() \}

- We have no idea how well we’re doing until we suddenly find a goal!

Informed Search

- We still need to know the problem
 - problem = \{ state_0, is-goal(), cost(), successors() \}

- We get some additional information at each node
 - “Hot” or “Cold”
 - Which states are better than others?
 - Information about distance to goal

- Formulate as a real-valued metric:
 - f(node).
Informed Search

- Exploit additional information of f() such that:
 - We find the goal faster when f() is accurate

- With the right algorithm:
 - We still (eventually) find a goal when f() is wrong
 - We can find the optimal goal if f() is only wrong in certain ways!
 - Generally easy to satisfy conditions too!

Best-First Search

- It’s really just TreeSearch again, except we allow more types of Queue-Get functions

- For each node, define an evaluation function f(node).
 - Having f() is how we “inform” the search!
 - Queue-Get: Expand the node with the smallest value of f()

- Watch out for “BFS”
 - Breadth-first search or best-first search?
Greedy Search

- Simple informed search with \(f() = \text{cost-to-go}(n) \)

- Complete?

- Optimal?

Greedy Search: Example

- Queue-Get: returns the node with minimum \(f(n) = \text{cost-to-go}(n) \)
- Assume we avoid repeated states.
A*

It’s a Best-First Search!

Thrilling. Yet Another TreeSearch. What’s Queue-Get this time?

Glad you asked! Queue-Get returns the node with the minimum value of:

\[f(n) = \text{cost-so-far}(n) + h(n), \]
where \(h(n) \) has some special properties.

What’s it good for?

A*

- Provided the heuristic is *admissible*:
 - A* is complete
 - A* is optimal
 - A* is *optimally efficient*

Optimally Efficient?

No algorithm can expand fewer nodes than A* and still be guaranteed to find the optimal answer.
A*: Admissible heuristics

- **Admissible:**
 \[h(n) \leq \text{the minimum achievable cost from } n \text{ to the goal.} \]

A*: Proof of Optimality

- **Strategy:**
 - Let \(C^* \) be cost of optimal solution
 - Show that a node on the path to the optimal solution will always be selected for expansion before a sub-optimal goal node.
 - Eventually, that node will be the goal node and we'll be done.

- **Proof**
 - Suppose a suboptimal goal \(G' \) in a node on fringe
 - \(G' \) is suboptimal \(\iff g(G') > C^* \)
 - \(f(G') = g(G') + h(G') \)
 - \(f(G') > C^* \).
 - There must be a node \(n \) on fringe that is on optimal path, and because \(h(n) \) can't overestimate, \(f(n) < C^* \)
 - Since \(f(n) < f(G') \), we'll expand \(n \) before \(G' \).
Admissible Heuristics

- **Objectives:**
 1. Accurate estimate of distance to goal
 2. Never overestimate (admissible)
 3. Easy to compute

- **Approaches:**
 - Just think of something
 - Relax constraints
 - Learn from experience

**A*: Example

What’s a good heuristic?
A*: Example

A* Example: Solution

1: {AA(265)}

3: { AA-D(269), AA-T(279), AA-K(470) }

7: { AA-T(279), AA-D-T(323), AA-D-AA(341), AA-D-F(391), AA-D-N(451), AA-D-L(456) , AA-K(470) }

Your turn!

1. Which algorithm do we get if we do Best First Search (BFS) with:
 - A. \(f() = \text{num-actions}(\text{node}) \)
 - B. \(f() = \text{cost-so-far}(\text{node}) \)
 - C. \(f() = \text{cost-to-go}(\text{node}) \)
 - D. \(f() = \text{cost-so-far}(\text{node}) + \text{cost-to-go}(\text{node}) \)
 - E. \(f() = \text{time-in-fringe}(\text{node}) \)
 - F. \(f() = -\text{time-in-fringe}(\text{node}) \)

Graph Search and A*

- Tree search A* has same problem as other tree searches... (what problem is it?)
 - Can re-expand same states many times over.

- Graph Search was the answer...
 - Don’t add paths to the fringe when we already know how to get to that state.
Graph Search A*

- Use GraphSearch/A*

A (10)
B (10)
C (4)
D (5)
E (0)

A (10)
AB (12)
AC (7)

AB (12)
ACA (16)
ACD (18)

ABA (14)
ABD (11)
ACD (18)

ACDE (23)

Sub-optimal!
(why did this happen?)

A stronger heuristic: Consistency

- Admissibility
 - \(h(n) \leq \text{true cost from } n \text{ to goal} \)

- Consistency (Monotonicity)
 - \(h(n) \leq c(n, n') + h(n') \)
 - (Implies admissibility. Why?)
 - \(h(n) \leq c(n, n') + [c(n', n'') + h(n'')] \)

- A* optimal if:
 - Tree: \(h() \) is admissible
 - Graph search: \(h() \) is consistent
Consistency

- Where is this function non-consistent?
 - Consistency property: \(h(n) \leq c(n, a, n') + h(n') \)

Consistency and Tree Search

- Why don’t we need consistency for tree search?
Constructing Admissible Heuristics

- Relax constraints
- Sub-problems
- Pattern databases

Generating Heuristics by Relaxation

Calculate *exact* distance for *relaxed* version of problem

![Start State](start-state.png) ![Goal State](goal-state.png)

Allow tile to be “teleported” to destination
h1: #misplaced tiles
Allow move to adjacent square even if occupied
h2: Manhattan distance
Generating heuristics with sub-problems

- $h_3(n) = \text{How many moves to get tiles 1-4 into the correct position?}$

- $h_4(n) = \text{How many moves to get tiles 5-8 into the correct position?}$

Pattern Database

- Stanford Parking Planner
 - Precompute distance to adjacent cells assuming no obstacles
Admissible Heuristics

- Which heuristic is better?
 - The one that produces the larger values.

- Are there admissible h_1, h_2 such that $h_1(n_i) > h_2(n_i)$ and $h_1(n_j) < h_2(n_j)$?

- Domination
 - $h_1(n) \geq h_2(n)$ for all n.

Combining Multiple Heuristics

- Suppose we have multiple admissible heuristics.
 - What is the optimal combination of them?

- What if the heuristics are disjoint?
 - I.e., progress on one heuristic can not affect progress of another heuristic
Inadmissible Heuristics

- Learning heuristics based on features
 - $H(n) = Ax(n) + By(n)$
 - Where A, B are parameters fit to observed data.
- Are these useful?

A*: Not a panacea

- Avoiding exponential search size requires heuristic error to grow no faster than $\log(\text{cost})$.
- This is hard to do: error often proportional to cost.
 - Consider: Straight-line distance?
- Otherwise, memory/CPU are $O(b^n)$
 - Memory will generally be the limiting problem
 - Sound familiar?
Recursive Best First Search (RBFS)

- RBFS is a scheme to reduce the memory requirements

- Each node knows the f() of the best alternative path from one of its ancestors
 - If the current f() value exceeds this limit, we unwind back to the common ancestor, then re-expand the tree down the alternate path.

- Two (or more) paths can wrestle control back and forth:
 - Constantly re-expanding nodes

- Space:
 - O(d)
IDA*

- IDA* is a scheme to reduce the memory requirements

- Virtually identical to IDS:
 - Instead of Depth-Limited Search, use f()-limited search
 - Upon failure, f()-limit is increased to the lowest f() value that was previously pruned.

- Time:
 - $O(b^{c^*/e})$

- Space:
 - $O(bd)$
SMA*

- RBFS and IDA* suffer from using too little memory.

- Idea: Remember as much of the search tree as we can. (Delay the onset of thrashing as long as we can!)

 1. When the queue is not too big
 - Expand the leaf in the search tree with the minimum f()
 2. When memory runs out:
 - Find the leaf in the search tree whose f() is the worst and remove it.
 - Back up its f() to its parent. Note that the parent might now become a leaf

Next time

- Local Search