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L19. GAUSSIAN DISTRIBUTIONS

EECS 492
March 17, 2011

Administrative
L2
0 PS4 due tonight

o PS5 & PS6 groups will be computed tonight
o Update your group preferences!

o Midterm 2:
o A week from today!
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Continuous Probability
I
o What is the probability that someone is exactly 1.5 m?

P(height)

>

15  height

m
o Probability is area under the curve!

o Corollaries:
o Total area under curve = 1.
o Magnitude of probability density can be greater than 1.

Probability Basics
s

Discrete Probability Continuous Probability

P(x) = Probability of event
occurring

Prob(x) = P(x)

0< P(z)<1

ZP(:E) — 1l

P(x) = Probability density at x

Prob(x) =0

0< P(x) <

/_0; P(x)dx =1
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Probability Basics: Expectation

s
0 Weighted average according to probability

0 Basic properties of expectation

Ela] =«
Elax] = aF[x]
Ela+z] = a+ E[x]

Elz +y] = E[z] + Ey]

Variance

o How much does a variable vary around its average
value?

El(z — Bla])?]

01 Suppose you have a stream of data coming in and
you want to compute the “running” mean and
variance?

o Do you have to store all the samples in memory?
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Gaussian Distribution
T

o Specified by mean and variance

o Structure: exponential
guadratic loss
1 —(11’—11'.’1:)2
P(x) = e 29

\/2mo?2

o Why do we like Gaussian
distributions?
o It’s its own conjugate prior—
o Gaussians in =» Gaussians out

Where is Jill?

o Where is Jill standing?
o Our initial belief:

x~ N(je =2,02=2)
o Bob sees lJill, but his vision isn’t so great.

P(z|x) ~ N(z,1)

m And we’ll suppose that he says “z=1".

o What is our posterior distribution?

P(x|z)
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Prediction

0.4r
0.35
031
0.25F

021

4 .|
o What will the posterior look like?

P(x)
P(zlx)

Where is Jill?

P(z|z) x

P(z|z)P(z)

P(z | Z) P(z) — Normalizing constant

—(w—pa)? 1 —(z—a)?
20‘2 e 202

1
e
2no2 \/2mo?

0 Let’s manipulate the exponential part:

2 2
—xz“+4x—4 —14+2z—2x
4 + 2

—z2+4m—4—2+4z—212
4

—322482—6
4

—2248/3z—2
4/3

Mean=4/3
pa— -_— 2 — “
~a=t/3416/0-2 G aiance3

22-Mar-11



EECS 492 Fall 2004

M. Wellman

Where is Jill? (Result)

0.5
P
—P(x)
.45 P(x|z)

Building Intuition

o Conditioning on variables can never increase
uncertainty.

04

=
0.3 P(z|x)
02
01F

0 L )
-15 -10 -5 0 5 10 15

0.4r

03

0.2

01

0 L . L L
-15 -10 -5 0 5
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Multiple random variables
sy .|

o We can stack several random variables together,
forming a column vector:

. height
| weight
o It has a N-dimensional probability density:
weight Are weight and
height
' independent?
height

Correlations
[

o Density function can exhibit
correlations in the functions

o (They’re dependent!) y

weight

o Marginal distributions and %
conditional distributions can be
computed from the joint
distribution height

Marginal distribution,
P(weight)

Conditional distribution
P(weight | height=7)

v
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Multiple random variables
s 4|
o Most operations extend naturally:

Elx] = /00 xP(z)dx

— 00

o Conditional, Joint, Marginal rules all work.

o Variance changes a bit:

E((z — Elz])”] = E[(z — Elz])(z — El])"]

Co-variance ‘

o When computing variance of a vector, we get a
covariance:

=B (| W ainn e )

o Diagonal terms are just the variances of the marginal
distributions.

weight
o What do the off-diagonal terms mean? ~

height
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Visualizing Gaussians

o Recall our PDF:

P(z) = ae~ $e-n"S @

o Find contours of constant probability

K?=(z—p)' S (z - p)

K=1,23,..

o Kis also known as the “Mahalanobis distance”

o Expand these terms, we end up with quadratic curve

o An ellipse!

Visualizing Gaussians

o Number of particles within each ellipse can be
computed based on properties of Gaussian

distributions A

m“

1 0.68 0.39
2 0.96 0.87
3 0.997 0.99

v

M. Wellman
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Covariance Matrices: Intuition

o Sketch equi-potential curves for the matrices
below (to scale):

S Y B Y

° 0 O

Covariance Matrices: Intuition

o What about:

o What about:

ERINNEE

22-Mar-11
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Gaussian Distributions
20

o Mean and covariance are meaningful for any distribution

o But they do not define the distribution— a incomplete description
o ... Unless it’s a Gaussian distribution.

o The Gaussian distribution is exactly parameterized by mean and
covariance.

o Compact (low memory)
o Conjugate prior

o Central Limit Theorem: Distribution of the sum (or average) of N
independent and identically distributed (1ID) random variables
approaches a normal distribution.

o In other words, even if you start off with something non-Gaussian,
you're likely to end up with one!

Multi-Variate Gaussian Distributions

T
0 Here’s the multi-variable distribution
o Note the structure!

]. 1 Ts—1
— —5(z—p)" 57 (z—p)
P(z) = (27T)N/2|E|1/26 ’

o Characterized by mean & covariance
po = Elz]
Yo = El(z — Blz])(z — Blz])"]

22-Mar-11
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Functions of random variables
N
o Suppose we know something about random variable x:

T~ N(H'SC’ Ew)

o And suppose | know a function y:

y = f(x)

o What is the distribution of y?
O Let’s derive [y, Ey

Linear functions of random variables
I
0 Let’s start with the linear case:

y = f(z)
y=Ax+0b
o What is E(y)?
py = E(y)
= FE(Az+0)
o Simplify:
py = AE(x)+b

22-Mar-11
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Linear functions of random variables (2)
N
o Reminders:
%y = El(y — Ely))(y — E[y])"]
py = AE(x)+0b

¥y, = E[(Az+b— Au, —b)(Ax +b— Ap, —b)7]
E[(Az — Apg)(Az — Apg)"]
ElA(z — pe) (2 — po) T A

- AE[(CII - .um)(w - ,Ux)ql]AT
AY, AT

Non-linear functions of random variables

i
o Again, suppose:

x ~ Nz, Xg)

yz%-l—b y = f(z)

o Approach: approximate f(x) with Taylor expansion
o What point should we approximate f(x) around?

22-Mar-11
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Linearizing functions: Taylor expansions

[
o First-order Taylor expansion y
o Let’s review 1D case
XO > X
af
y~ —| (z—=z0)+ f(o)
dz |,

Linearizing functions (Generalization)

0 Generalized case:

U1 fl(acl,xg, )
y f— y2 pr— f2(x1,$2, .-.)
le) 0
8_321 % T1 — T, fl(x107x20)
Y~ 5;% %;Lz To — Xy, | + fz(l‘lo»xzo)
“Jacobian”

y =~ J|gq (X —20) + f(20)

22-Mar-11
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Projecting means and covariances (ta da!)
N

Y~ J|zo(r —0) + f(20)

sz|xO$—J|xO£L’0—i—f(£U0) y=Aa:+b

S L . ) Zy:AEmAT
A b

Non-linear case is reduced to linear case via first-order Taylor
approximation.

What do we lose by dropping higher order terms?

Linearization Error
N

o Mean and covariance are
computed around the expected
value

o Non-linear behavior away from
expected value is not well B=
approximated.

o More on this later...

22-Mar-11
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Covariance Projection: Example

0 A robot observes a landmark
o Sensor measures range and theta

o Uncertainty in range and theta

3

r.6 o5 =0.01

03:1

0 What is the uncertainty in x and y?
o Step one: write x,y as f(r, theta)

Covariance Projection: Example
R

o Write our desired quantities as function of other
random variables

MRk ie)

0 Whatis Hz,y ?
o Suppose we observe r = 10, theta = /2

o= [T 1= 5]

22-Mar-11
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Covariance Projection: Example
IEN
o Now on to covariance... our equations from before:

)=l -1

o We linearize the function:

r—ro |
F0) = | g0 |+ .00
o What is J?
Ofr  Ofs
-z 7
or 00 - lr=rqy,0=0q

Covariance Projection: Example

cos(fp) —rosin(fo)
sin(fp) 7o cos(bo)
¥
r=10, theta=0
¥
1 0
/= [ 0 10 ]

22-Mar-11
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Covariance Projection: Example
R

Yoy = JSrgJ"
T
1 0 1 0
Ew,y‘{o 10]2’*"[0 10]

0 But whatis X, ?

o2 =1
oa =0.01

Covariance Projection: Your turn!

o Consider a differentially-driven robot
o We observe dg, d,
o d, is a constant

o Std. deviation proportional to valde e
meg, 04, = o’dr e

&R

22-Mar-11
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Your turn!

o How to convert left/
right distances to a
change in position?

Axr = —dR;dL & "X
Al = du=dL %,
B
x
| Kk o
0 Whatis XAz, A0 ? / ‘ o

o What is the Jacobian? .

fight

(Solution)
N

CezdR 0
EdR,dL — 0 a2dL

/= [ 11/223 —1§ZB }

Saene = JSdpd,

R b | R A

22-Mar-11
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Next Time
R

0 Extended Kalman Filter

o Efficient, recursive inference for continuous-valued
problems
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