The story up to now...

- Uninformed Search
 - BFS, DFS, IDS

- Informed Search
 - A*, SMA*

- Local Search
 - Hill Climbing, Genetic Algorithms
Today

- Constraint Satisfaction Problems
 - Examples
 - Definitions

- Making smart choices going forward
 - Minimum Remaining Values heuristic
 - Forward checking
 - Constraint Propagation

- Making smart choices going backward (when we get stuck)
 - Backjumping

- Local Search Strategies

States as Black Boxes

- Search methods so far impose minimal requirements on states:
 - Generate successors
 - Evaluate domain-specific heuristics
 - Apply goal test

- From point of view of search algorithm, states are **black boxes** — no relevant internal structure
Exploiting Structure in States

- Constraint Satisfaction Problems (CSPs)
 - Standard, structured, and simple representation
 - Enabling use of general-purpose algorithms
 - Achieving performance improvements without domain-specific heuristics

Variables, Domains, Constraints

- Variables
 - \{entrée, dessert\}

- Domains
 - The set of values a variable can take
 - entrée \in \{ steak, fish, lasagna \}
 - dessert \in \{ pie, jello, ice cream \}

- Constraints
 - A relationship between two or more variables
 - calories(entrée) + calories(dessert) < 1000
 - calcium(entrée) + calcium(dessert) > 100
Example: 8 Queens

Find an arrangement of queens such that no queen attacks another

8 Queens as CSP

- **Variables**, $X_1, ..., X_n$
 - One for each queen ($n=8$)
 - Assume one queen per column

- **Variable domains**
 - Row location of queen in column i, $X_i \in \{1, ..., 8\}$

- **Constraints**, $C_1, ..., C_m$
 - No queens can attack each other
 - $X_i \neq X_j$, $i \neq j$
 - $X_i \neq X_j + k$, $|i - j| = k$
Example: Map Labeling

variables
- City label locations

domains
- \{NW, NE, SW, SE\}

constraints
- Labels of nearby cities do not overlap

Map Labeling as CSP

- Variables
 - City label locations

- Domains
 - \{NW, NE, SW, SE\}

- Constraints
 - Labels of nearby cities do not overlap

Legal assignments
Example: 3SAT

\[(P_1 \lor P_2 \lor P_3) \land (P_1 \lor P_2 \lor P_4) \land (P_1 \lor P_3 \lor P_4) \land
\]
\[(\neg P_1 \lor \neg P_2 \lor P_3) \land (P_2 \lor P_3 \lor P_4) \land (\neg P_1 \lor P_2 \lor \neg P_4) \land
\]
\[(\neg P_1 \lor P_2 \lor \neg P_3) \land (\neg P_1 \lor \neg P_3 \lor \neg P_4) \land (\neg P_2 \lor \neg P_3 \lor P_4) \land
\]
\[(\neg P_1 \lor P_3 \lor \neg P_4) \land (\neg P_1 \lor \neg P_2 \lor \neg P_3) \land (P_2 \lor \neg P_4) \land
\]
\[(\neg P_1 \lor \neg P_2 \lor \neg P_3)\]

Variables?
Domains?
Constraints?

Other examples?

- What other CSPs can you think of?
Example: Crossword Puzzle

Variables? Domains? Constraints?

Example: Sudoku

Variables? Domains? Constraints?
Cryptarithmetic

- Variables
 - letters

- Domains
 - \{0, ..., 9\}

- Constraints
 - Columns have to add up right, including carries
 - Letters stand for distinct digits
 - S, M are non-zero

CSPs as Search ("F" grade)

- For uninformed search formulation we need:
 \{state_0, successors(n), is-goal(n), path-cost(n) \}

 - state: Assignments for each variable.
 - state_0: No variables yet assigned
 - successors(n): All possible variable assignments for all unassigned variables
 - is-goal(n): All variables assigned satisfying all constraints?
 - path-cost(n): any constant value

- Which search algorithm?
- Run time?
CSPs as Search ("D")

- For uninformed search formulation we need:
 \{state_0, successors(n), is-goal(n), path-cost(n) \}

- state: Assignments for each variable.
- state_0: No variables yet assigned
- successors(n): All consistent possible variable assignments for all unassigned variables
- is-goal(n): All variables assigned?
- path-cost(n): any constant value

- Run time?

Cryptarithmic Search Tree ("D")

Branching factor
- \(10^n\) at level 1
- \(9(n - 1)\) at level 2
- \(8(n - 2)\) at level 3,…

- # of leaves = \(n!10!\)

But only \(10^n\) complete assignments!
Another Key Observation

- The consistency of an assignment depends only on the values assigned to the variables.
- The order in which the variables were assigned is irrelevant! (Commutivity)
 - Ignoring this leads to additional $n!$ complexity
 - Solution: expand only one variable per node.

CSPs as Search (“C”)

- For uninformed search formulation we need:
 \{ \text{state}_0, \text{successors}(n), \text{is-goal}(n), \text{path-cost}(n) \} \n
 - state: Assignments for each variable.
 - state_0: No variables yet assigned
 - successors(n): All consistent possible variable assignments for a single unassigned variables
 - is-goal(n): All variables assigned?
 - path-cost(n): any constant value

- Run time?
Cryptarithmetic Search Tree ("C")

Branching factor
10 at level 1
9 at level 2
8 at level 3,…

Picking which variable to expand

- Picking next variable arbitrarily is often inefficient

- MRV (minimum remaining values) heuristic
 - Choose variable with fewest legal values remaining
 - aka most constrained variable
 - If any variable has no legal values, MRV will choose that and detect failure immediately

- Degree heuristic
 - choose variable with largest number of constraints on unassigned variables
How many values remain?

- How do we compute which values remain for a variable?
 - Determining this exactly requires solving the problem!
 - How can we efficiently reduce the size of the domain?

How many values remain?

- Forward Checking
- Arc Consistency
- k-Consistency
- MAC Consistency

Don’t worry, these are all basically the same idea, applied to varying extremes!
Forward Checking (FC)

- Whenever a variable X is assigned
 - Examine each unassigned variable Y connected to X by a constraint
 - Delete from Y's domain any value inconsistent with the value chosen for X
 - If assignment becomes impossible (anywhere), backtrack.

Forward Checking Example

Assign: WA=R
Assign: Q = G
Assign: Q = G
Arc Consistency

- Basic idea:
 - Whenever we reduce the domain for a node, reprocess the edges it’s connected to.
 - Reprocessing: for an edge between (A,B)
 - remove any values from Dom(A) for which there is no value in Dom(B) that satisfies the edge.
 - and vice-versa
 - (If domains got smaller, we must reprocess more edges!)

- Arc Consistency is very powerful
 - Can solve many problems by itself!

Arc Consistency: Run-Time

- Processing a single arc:
 - O(d²): (for each value in A, check each value in B)

- Each arc processed at most _____ times
 - 2d-1: Arcs only reprocessed when Dom(A) or Dom(B) gets smaller... at worst one value at a time. (But we know to stop when Dom{}=0).

- At most _____ arcs/edges (fully connected)
 - n(n-1)/2 (fully connected)

- Total runtime: O(n²d³)
 - Remember: CSP includes 3SAT, which is NP-complete.
 - How can Arc Consistency be polynomial time?
k-Consistency

- **k-consistent:**
 - for any consistent assignment of $k - 1$ variables, exists consistent value of any kth
- **Strongly k-consistent:**
 - j-consistent for all $j \leq k$
- **Special cases**
 - $k = 1$: node consistency (maintained by FC)
 - $k = 2$: arc consistency
 - $k = n$: Problem is (almost) solved.
- Can choose to enforce higher-order consistency after each assignment.
 - Albeit at greater computational costs.

Your turn: Special Constraints

- **Goal:** Want to be able to enforce constraints at the highest possible level in the search tree in order to maximize pruning.
 - Assume all variables have an integer domain \{1,9\} and that you know the current set of permissible values for each variable.
 - Reformulate these constraints so that they can be applied as early as possible in the search tree:
 - (Note: there may be different constraints that you can apply at different levels!)
 - Assume domain of all variables is initially \{1-9\}
 1. All-Different(x_1, x_2, x_3, x_4)
 2. All-Different($x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$)
 3. All-Same(x_1, x_2, x_3)
 4. Sum(x_1, x_2, x_3, x_4) = 30
 5. Sum(x_1, x_2, x_3, x_4) is Odd
 6. Product(x_1, x_2, x_3, x_4) = 18
 7. IsPrime($100^2 + 10^4 + x_3$)
Challenge Winners

Your turn: Cryptarithmic Problem

- What the graph look like?
- Solve it using MRV, forward checking
 - Variable ordering: \{c1, c2, T, W, O, F, U, R\}
 - Static analysis: F = 1.

(removing this problem… I’ve never gotten through it without making about six mistakes… very very grungy.)
Picking values

- We’ve talked a lot about which variable to substitute...

- Does it matter which order we try the values in the domain?
 - Yes! If we try the likely values first, we’ll find a solution faster.

Picking Values

- Least constrained value
 - Which value rules out the fewest values nearby?
 - Pursue most promising directions first

- Other heuristics
 - Most probable a priori
 - Cryptograms: for a given ciphertext word, try common plaintext words first.
MRV vs. LCV?

- Minimum Remaining Values
 - Pick variable with fewest values left in its domain

- Least Constrained Value:
 - Pick value with most possible children

- Why do we maximize one and minimize the other?
 - To solve the problem, we must eventually assign every variable, so pick the one with the smallest branching factor (MRV).
 - Once we’ve picked a variable, we must ultimately rule out all possibilities, so look for most promising values first.
 - Hope that we won’t have to try other values later on….

BT Refinement: Perspectives

- Look Back
 - Reasoning about what to do after failure
 - Backjumping
 - Backtrack to some decision before most recent

- Look Ahead
 - Reasoning about how to make better assignments
 - Examples
 - Ordering heuristics
 - Constraint propagation: FC, MAC,... MkC
Basic Back Goal

- Our goal is to jump back up as far as possible
 - Safe jump: don’t miss a solution
 - Know that the sub-tree we skip is unsolvable

Basic Back Jumping

- **Conflict Set**(X$_7$) :
 - For each value in Dom(X$_7$), what is the earliest variable that is inconsistent with it?
 - Suppose Dom(X$_7$) = \{v$_1$, v$_2$\}
 - Suppose X$_7$=v$_4$ is incompatible with the current values of X$_3$ and X$_5$. We’d have to go all the way back up to X$_3$ to make X$_7$=v$_3$ possible.
 - Suppose X$_7$=v$_2$ is incompatible with the current values of X$_4$, X$_6$, and X$_5$. We’d have to go all the way back up to X$_4$ to make X$_7$=v$_2$ possible.
 - Conflict Set(X$_7$) = \{X$_3$, X$_4$\}

- We backjump to X$_4$: a different value of X$_4$ might allow an assignment of X$_7$ (X$_7$ = v$_2$).

Forward Checking?
6-Queens Example

from (Kondrak & van Beek, 1997)
6-Queens Example

Q₆ conflict set = \{1,2,3,5\}, Jump back to 5…

6-Queens Example

Q₅: nothing left to try. back up.
6-Queens Example

Q₄: Try row 6.

Q₅: Try row 4.
6-Queens Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Q</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>3</td>
<td>Q</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Q</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Q</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q₆ conflict set = \{1,2,3,4\}

6-Queens Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Q</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Q</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Q</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Q</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Backjump to Q₄
Conflict-Directed Backjumping (CBJ)

- In ordinary back-jumping, we consider the conflict set at just the current search node
 - When we jump back, we “forget” why we did it.

- We can do better by propagating conflict set information back up the tree
 - Allows us to “remember” the constraints of future variable assignments.

6-Queens Example

from (Kondrak & van Beek, 1997)
6-Queens Example

conflict set = {1,2,3,5}, Jump back to 5…
6-Queens Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combine Q6 conflicts with local conflicts
\{1,2,3\} = \{1,2,3,5\} U \{1,2,3\} - 5

6-Queens Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Backjump to Q₃ !
Conflict-based BackJump Wrap-Up

- By transferring conflict set, we preserve key information across backtracks, pruning a much larger part of the search space

Disconnected Sub-graphs
Sub problems

- Finding independent sub-problems is rare, but wonderful
 - Original problem: $O(d^n)$
 - Split in two equal-sized sub-problems: $O(d^{n/2})$

Your turn

- Let ‘abcde’ be a 5 digit number (a! = 0) such that:
 - $a = 3b$
 - $b = 3^c$
 - $a = d+1$
 - $d = 2e$

- Is this an easy or hard problem?
Trees

- Trees are great too!
- Starting from the leaves:
 - Apply arc consistency to the parent, removing values from parent domain.
 - Now, the leaves can always find a value consistent with their parent.
- Start from the root:
 - Pick any value for the node consistent with its parent.
- Runtime?
 - \(nd^2 + nd \)

Trees

- Let ‘abcde’ be a 5 digit number (a!=0) such that:
 - \(a = 3b \)
 - \(b = 3^c \)
 - \(a = d + 1 \)
 - \(d = 2e \)

There are two solutions! 31021 and 93184
Transforming Problems into Trees

It’s a tree if we could remove SA!

Tree-ification

- Pick nodes S that turn the problem into a tree

- For all possible assignments to S
 - Solve the induced tree
 - If solution found, return it
Local Search

- Local search is applicable to CSP too!

Advantages
- Can be very fast
- Replanning
 - Produces solutions similar to earlier solutions

Local Search for CSPs

- Search in space of complete assignments
- Min-conflicts heuristic
 - Choose variable to reassign
 - Pick value minimizing number of conflicts with neighbors in constraint graph
- For n-queens, search time empirically independent of n
 - Solutions are fairly densely distributed around the state space: any initial guess never has far to go!
GSAT: Local Search for SAT

procedure GSAT(Σ)
 for i := 1 to Max-tries
 T := random truth assignment
 for j := 1 to Max-flips
 if T satisfies Σ then return T
 else Poss-flips := set of vars that increase satisfiability most
 V := a random element of Poss-flips
 T := T with V's truth assignment flipped
 end
 end
 end
return "no satisfying assignment found"

Next Time

- AI in Medicine, Prof. Syed
- Recitation: hints/suggestions for programming challenge!