EECS 492 Fall 2008 Sep-17-08

Constraint Satisfaction

EECS 492
January 25t, 2011

The story up to now...

o Uninformed Search
o BFS, DFS, IDS

o Informed Search
o A*, SMA*

o Local Search
o Hill Climbing, Genetic Algorithms

M. Wellman & E. Olson 1

EECS 492 Fall 2008 Sep-17-08

Today
s

o Constraint Satisfaction Problems
o Examples
o Definitions

o Making smart choices going forward
o Minimum Remaining Values heuristic
o Forward checking
o Constraint Propagation

o Making smart choices going backward (when we get stuck)
o Backjumping

o Local Search Strategies

States as Black Boxes

Iy
o Search methods so far impose minimal
requirements on states:
O Generate successors
o Evaluate domain-specific heuristics
o Apply goal test
o From point of view of search algorithm, states are
black boxes — no relevant internal structure

M. Wellman & E. Olson 2

EECS 492 Fall 2008 Sep-17-08

Exploiting Structure in States

o Constraint Satisfaction Problems (CSPs)
o Standard, structured, and simple representation
o Enabling use of general-purpose algorithms

o Achieving performance improvements without domain-
specific heuristics

Variables, Domains, Constraints

o Variables
o {entrée, dessert}

o Domains
o The set of values a variable can take
o entrée \in { steak, fish, lasagna }
o dessert \in { pie, jello, ice cream }

o Constraints
o A relationship between two or more variables
o calories(entrée) + calories(dessert) < 1000
o calcium(entrée) + calcium(dessert) > 100

M. Wellman & E. Olson 3

EECS 492 Fall 2008 Sep-17-08

Example: 8 Queens
s

8 Queens as CSP

g |
o Variables, X,,...,X,

o One for each queen (n=8)

o Assume one queen per column

0 Variable domains
o Row location of queen in column i, X, € {1,...,8}

o Constraints, C,,...,C,,
o No queens can attack each other
mXzEX,i%]
mX 2 X +k |i-j] =k

M. Wellman & E. Olson 4

EECS 492 Fall 2008

Example: Map Labeling

o Saginaw

Flint
°

Grand Rapitisnsing
E Pontiac .

Detroit
[] [J °

KalamaaooArbor

South Bend Toledo
[] []

[]
For;t Wayne Bowling Green

Mansfield

.Cleveland

Youngsta
[] [J

Akron

Map Labeling as CSP

0 Variables Detroit

o City label locations Ann Arbbr
o Domains

o {NW, NE, SW, SE} AA | Detroit
0 Constraints NW |NE, SE

o Labels of nearby cities NE |none

do not overlap SW |NW, NE, SE
SE |NW,NE

Legal assignments

M. Wellman & E. Olson

Sep-17-08

EECS 492 Fall 2008 Sep-17-08

Example: 3SAT
s

(P,v=P,v=P)A(P,v=P,v=P,)A(Pv=P3v=P,)A
(=P,vP,v=P)A(P,v=Pyv =P,)A(=P,VP,v=P,)A
(=P,v=P,vP)A(=P, VPV =P)A(=P, VPV =P,)A
(=P,v=P,vP)A(=P,v=P;vP,)A(=P,v=P;VvP,)A
(=P,v=P,v=P,)

Variables?

Domains?
Constraints?

Other examples?

s
0 What other CSPs can you think of?

M. Wellman & E. Olson

EECS 492 Fall 2008 Sep-17-08

Example: Crossword Puzzle
.

1A: A number 1D: A metal

2A: A number 2D: A number
Variables?
Domains?
Constraints?

Example: Sudoku
s
2
1 316 514
7 819
4 2 1
6 9 1 8
2 8 3
4l 5 Variables?
s | g 3 | 4 . Domain's?
Constraints?
2

M. Wellman & E. Olson 7

EECS 492 Fall 2008 Sep-17-08

Cryptarithmetic
s

. SEND
o Variables +MORE
m letters
o Domains MONEY
= {0,..,9}

o Constraints
m Columns have to add up right, including carries
m Letters stand for distinct digits
m S, M are non-zero

CSPs as Search (“F” grade)
Iy

o For uninformed search formulation we need:
{state,, successors(n), is-goal(n), path-cost(n) }

O state: Assignments for each variable.
o state,: No variables yet assigned

o successors(n): All possible variable assignments for all
unassigned variables

o is-goal(n): All variables assigned satisfying all constraints?
o path-cost(n): any constant value

o Which search algorithm?
o Run time?

M. Wellman & E. Olson 8

EECS 492 Fall 2008 Sep-17-08

CSPs as Search (“D”)

I
o For uninformed search formulation we need:
{state,, successors(n), is-goal(n), path-cost(n) }

o state: Assignments for each variable.
o state,: No variables yet assigned

o successors(n): All consistent possible variable assignments for all
unassigned variables

o is-goal(n): All variables assigned?
o path-cost(n): any constant value

o Run time?

Cryptarithmetic Search Tree (“D”)

)// \\\ n is # of variables

S=0 S=0 oo S=0 S=0 oo size of domain = 10
E=1 E=2 N=1 N=2
Branching factor
10 n at level 1 =D # of leaves = n!10!
9(n-1) atlevel 2
8(n—2) at level 3,... But only 10" complete assignments!

M. Wellman & E. Olson 9

EECS 492 Fall 2008 Sep-17-08

Another Key Observation
s

0 The consistency of an assighment depends only on
the values assigned to the variables

o The order in which the variables were assigned is
irrelevant! (Commutivity)
o Ignoring this leads to additional n! complexity
o Solution: expand only one variable per node.

CSPs as Search (“C”)

T
o For uninformed search formulation we need:
{state,, successors(n), is-goal(n), path-cost(n) }

o state: Assignments for each variable.
o state,: No variables yet assigned

o successors(n): All consistent possible variable assignments
for a single unassigned variables

o is-goal(n): All variables assigned?
o path-cost(n): any constant value

o Run time?

M. Wellman & E. Olson 10

EECS 492 Fall 2008

Cryptarithmetic Search Tree (“C”)

.
SEND o
M O N E Y $=0 S=1 S=2 S=3 S=4 eee
)// \\\ n is # of variables
S=0 S=0 oo S=0 S=0 size of domain = 10
E=1 E=2 E=8 E=9

Branching factor
10 at level 1
9 at level 2
8 at level 3,...

Picking which variable to expand

o Picking next variable arbitrarily is often inefficient

o MRV (minimum remaining values) heuristic
o Choose variable with fewest legal values remaining
o aka most constrained variable

o If any variable has no legal values, MRV will choose that and
detect failure immediately

o Degree heuristic

o choose variable with largest number of constraints on
unassigned variables

M. Wellman & E. Olson

Sep-17-08

11

EECS 492 Fall 2008 Sep-17-08

How many values remain?
s

o How do we compute which values remain for a
variable?
o Determining this exactly requires solving the problem!
o How can we efficiently reduce the size of the domain?

How many values remain?

I
o Forward Checking

o Arc Consistency
o k-Consistency
o MAC Consistency

Don’t worry, these are all basically the same idea,
applied to varying extremes!

M. Wellman & E. Olson 12

EECS 492 Fall 2008 Sep-17-08

Forward Checking (FC)
Iy

o Whenever a variable X is assigned

o Examine each unassigned variable Y connected to X by
a constraint

o Delete from Y’s domain any value inconsistent with
the value chosen for X

o If assignment becomes impossible (anywhere),
backtrack.

Forward Checking Example
.

Assign: WA=R

M. Wellman & E. Olson 13

EECS 492 Fall 2008 Sep-17-08

Forward Checking Example

Assign: Q=G

M. Wellman & E. Olson 14

EECS 492 Fall 2008 Sep-17-08

Forward Checking Example
.

Assign: Q=G

Assign: Q=G

M. Wellman & E. Olson 15

EECS 492 Fall 2008 Sep-17-08

Arc Consistency

(N
o Basic idea:

o Whenever we reduce the domain for a node, reprocess the
edges it’s connected to.

o Reprocessing: for an edge between (A,B)

m remove any values from Dom{A} for which there is no value in
Dom{B} that satisfies the edge.

m and vice-versa
m (If domains got smaller, we must reprocess more edges!)

o Arc Consistency is very powerful
o Can solve many problems by itself!

Arc Consistency: Run-Time

o Processing a single arc:
o O(d?): (for each value in A, check each value in B)

o Each arc processed at most times

o 2d-1: Arcs only reprocessed when Dom{A} or Dom{B} gets smaller... at
worst one value at a time. (But we know to stop when Dom{}=0).

o At most arcs/edges (fully connected)
o n(n-1)/2 (fully connected)

o Total runtime: O(n2d3)
o Remember: CSP includes 3SAT, which is NP-complete.
o How can Arc Consistency be polynomial time?

M. Wellman & E. Olson 16

EECS 492 Fall 2008

k-Consistency

o k-consistent:

o for any consistent assignment of k — 1 variables, exists
consistent value of any kth

o Strongly k-consistent:
o j-consistent for all j < k
o Special cases
o k = 1: node consistency (maintained by FC)
o k =2: arc consistency
o k =n: Problem is (almost) solved.
o Can choose to enforce higher-order consistency after
each assignment.
o Albeit at greater computational costs.

Your turn: Special Constraints
s |

0 Goal: Want to be able to enforce constraints at the highest possible level
in the search tree in order to maximize pruning.

o Assume all variables have an integer domain {1,9} and that you know the
current set of permissible values for each variable.

o Reformulate these constraints so that they can be applied as early as possible
in the search tree:
m (Note: there may be different constraints that you can apply at different levels!)

o Assume domain of all variables is initially {1-9}

1. All-Different(x,, X,, X3, X,)

2. All-Different(xy, X,, X3, X4, Xs, Xg, X7, Xg, Xg)

3. All-Same(xy, X,, X3);

4. Sum(x, X,, X3, X,) = 30

5. Sum(xy, X,, X3, X,) is Odd

6. Product(x1, x2, x3, x4) = 18

7. IsPrime(100*x1 + 10*x2 + x3) 4)

M. Wellman & E. Olson

Sep-17-08

17

EECS 492 Fall 2008

Sep-17-08

Challenge Winners

Your turn: Cryptarithmetic Problem

0 What the graph look like?

o Solve it using MRV, forward checking
o Variable ordering: {c1,c2, T, W, O, F, U, R}
o Static analysis: F = 1.

(removing this problem... I’ve never =~ = ——————__
gotten through it without making about FOUR
six mistakes... very very grungy.)

M. Wellman & E.

Olson 18

EECS 492 Fall 2008

Picking values

0 We've talked a lot about which variable to
substitute...

0 Does it matter which order we try the values in
the domain?

o Yes! If we try the likely values first, we’ll find a solution
faster.

Picking Values

I
0 Least constrained value
o Which value rules out the fewest values nearby?
o Pursue most promising directions first

0 Other heuristics
o Most probable a priori

o Cryptograms: for a given ciphertext word, try common
plaintext words first.

M. Wellman & E. Olson

Sep-17-08

19

EECS 492 Fall 2008

MRV vs. LCV?

o Minimum Remaining Values
o Pick variable with fewest values left in its domain

o Least Constrained Value:
o Pick value with most possible children

o Why do we maximize one and minimize the other?

o To solve the problem, we must eventually assign every variable, so pick the
one with the smallest branching factor (MRV).

o Once we've picked a variable, we must ultimately rule out all possibilities, so
look for most promising values first.

® Hope that we won’t have to try other values later on....

BT Refinement: Perspectives

— | —

Look Back Look Ahead
o Reasoning about whatto o Reasoning about how to
do after failure make better assignments
o Backjumping o Examples
o Backtrack to some decision o Ordering heuristics

before most recent o Constraint propagation: FC,

MAC,... MkC

M. Wellman & E. Olson

Sep-17-08

20

EECS 492 Fall 2008

Basic Back Goal

o Our goal is to jump back up as far as possible
o Safe jump: don’t miss a solution

o Know that the sub-tree we skip is unsolvable

Basic Back Jumping

o Conflict Set(X)) :
o For each value in Dom{X;}, what is the earliest variable that
is inconsistent with it?
m Suppose Dom{X,} = {v;, v,}

m Suppose X,=v, is incompatible with the current values of X, and

Xs. We'd have to go all the way back up to X; to make X,=v,;
possible.

m Suppose X7=vf1is incompatible with the current values of X,, X,

and X. We’d have to go all the way back up to X, to make X,=v,
possible.

m Conflict Set(X,) = {X;, X,}

o We backjump to X,: a different value of X, might allow an
assignment of X, (X; = v,).

Forward Checking?

M. Wellman & E.

Olson

Sep-17-08

21

EECS 492 Fall 2008 Sep-17-08

6-Queens Example
.

Ol | W[N]~

from (Kondrak & van Beek, 1997)

6-Queens Example
.

Ol | W[N]~

M. Wellman & E. Olson 22

EECS 492 Fall 2008 Sep-17-08

6-Queens Example
.

Ol | W[N]~

Qg conflict set = {1,2,3,5}, Jump back to 5...

6-Queens Example
.

Ol | W[N]~

Qs: nothing left to try. back up.

M. Wellman & E. Olson 23

EECS 492 Fall 2008 Sep-17-08

6-Queens Example
.

Ol | W[N]~

Q,: Try row 6.

6-Queens Example
.

Ol | W[N]~

Qs: Try row 4.

M. Wellman & E. Olson 24

EECS 492 Fall 2008

6-Queens Example

Ol | W[N]~

Qq conflict set = {1,234}

6-Queens Example

Ol | W[N]~

1

Backjump to Q,

M. Wellman & E. Olson

Sep-17-08

25

EECS 492 Fall 2008 Sep-17-08

Conflict-Directed Backjumping (CBJ)

Iy
o In ordinary back-jumping, we consider the conflict
set at just the current search node
o When we jump back, we “forget” why we did it.

o We can do better by propagating conflict set
information back up the tree

o Allows us to “remember” the constraints of future
variable assignments.

6-Queens Example
.

Ol | W[N]~

from (Kondrak & van Beek, 1997)

M. Wellman & E. Olson 26

EECS 492 Fall 2008 Sep-17-08

6-Queens Example
.

Ol | W[N]~

6-Queens Example
.

Ol | W[N]~

Qg conflict set = {1,2,3,5}, Jump back to 5...

M. Wellman & E. Olson 27

EECS 492 Fall 2008 Sep-17-08

6-Queens Example
.

{1,2,3}

Ol | W[N]~

Combine Q6 conflicts with local conflicts
{123y={1235yU{123}-5

6-Queens Example
.

Ol | W[N]~

1

Backjump to Q!

M. Wellman & E. Olson 28

EECS 492 Fall 2008

Conflict-based BackJump Wrap-Up

0 By transferring conflict set, we preserve key
information across backtracks, pruning a much
larger part of the search space

Disconnected Sub-graphs

M. Wellman & E. Olson

Sep-17-08

29

EECS 492 Fall 2008 Sep-17-08

Sub problems
s

o Finding independent sub-problems is rare, but
wonderful
o Original problem: O(d")
o Split in two equal-sized sub-problems: O(d™2)

Your turn
T

0 Let ‘abcde’ be a 5 digit number (a!=0) such that:
oa=3b
ob=3¢
oa=d+1
od=2e

o Is this an easy or hard problem?

M. Wellman & E. Olson 30

EECS 492 Fall 2008

Trees

o Trees are great too!

o Starting from the leaves:

o Apply arc consistency to the parent, removing values from parent
domain.

o Now, the leaves can always find a value consistent with their parent.

o Start from the root:
o Pick any value for the node consistent with its parent.

o Runtime?
o nd2+nd

Trees

0 Let ‘abcde’ be a 5 digit number (a!=0) such that:

oa=3b
ob=3c
Oa=d+1
od=2e

There are two solutions! 31021 and 93184

M. Wellman & E.

Olson

Sep-17-08

31

EECS 492 Fall 2008 Sep-17-08

Transforming Problems into Trees
s

-

It’s a tree if we
could remove SA!

Tree-ification
[

0 Pick nodes S that turn the problem into a tree

o For all possible assignments to S

o Solve the induced tree
m |f solution found, return it

M. Wellman & E. Olson 32

EECS 492 Fall 2008 Sep-17-08

Local Search

s
0 Local search is applicable to CSP too!

o Advantages
o Can be very fast

o Replanning
m Produces solutions similar to earlier solutions

Local Search for CSPs

s
0 Search in space of complete assignments
o Min-conflicts heuristic
o Choose variable to reassign
o Pick value minimizing number of conflicts with
neighbors in constraint graph
o For n-queens, search time empirically independent
ofn

o Solutions are fairly densely distributed around the
state space: any initial guess never has far to go!

M. Wellman & E. Olson 33

EECS 492 Fall 2008 Sep-17-08

GSAT: Local Search for SAT

s
procedure GSAT(X)
fori:=1to Max-tries
T := random truth assignment
for j := 1 to Max-flips
if T satisfies = then return T
else Poss-flips := set of vars that increase satisfiability most
V := a random element of Poss-flips
T := T with V’s truth assignment flipped
end
end

return “no satisfying assignment found”

Next Time

s
o Al in Medicine, Prof. Syed

0 Recitation: hints/suggestions for programming
challenge!

M. Wellman & E. Olson 34

