

The story up to now...

- Uninformed Search
 - BFS, DFS, IDS
- Informed Search
 - □ A*, SMA*
- Local Search
 - Hill Climbing, Genetic Algorithms

Today

- Constraint Satisfaction Problems
 - Examples
 - Definitions
- Making smart choices going forward
 - Minimum Remaining Values heuristic
 - Forward checking
 - Constraint Propagation
- Making smart choices going backward (when we get stuck)
 - Backjumping
- Local Search Strategies

States as Black Boxes

- Search methods so far impose minimal requirements on states:
 - Generate successors
 - Evaluate domain-specific heuristics
 - Apply goal test
- □ From point of view of search algorithm, states are
 black boxes no relevant internal structure

Exploiting Structure in States

- Constraint Satisfaction Problems (CSPs)
 - Standard, structured, and simple representation
 - Enabling use of general-purpose algorithms
 - Achieving performance improvements without domainspecific heuristics

Variables, Domains, Constraints

- Variables
 - {entrée, dessert}
- Domains
 - The set of values a variable can take
 - entrée \in { steak, fish, lasagna }
 - dessert \in { pie, jello, ice cream }
- Constraints
 - A relationship between two or more variables
 - □ calories(entrée) + calories(dessert) < 1000
 - calcium(entrée) + calcium(dessert) > 100

Example: 8 Queens

Find an arrangements of queens such that no queen attacks another

8 Queens as CSP

- \square Variables, $X_1,...,X_n$
 - \square One for each queen (n=8)
 - Assume one queen per column
- Variable domains
 - Row location of queen in column $i, X_i \in \{1,...,8\}$
- \square Constraints, $C_1,...,C_m$
 - No queens can attack each other
 - $X_i \neq X_j$, $i \neq j$
 - $X_i \neq X_j' + k, |i-j| = k$

Example: 3SAT

Variables?
Domains?
Constraints?

Other examples?

□ What other CSPs can you think of?

Cryptarithmetic SEND + MORE - letters Domains - {0,...,9} Constraints - Columns have to add up right, including carries - Letters stand for distinct digits - S, M are non-zero

CSPs as Search ("F" grade)

- □ For uninformed search formulation we need: {state₀, successors(n), is-goal(n), path-cost(n) }
 - state: Assignments for each variable.
 - state₀: No variables yet assigned
 - successors(n): All possible variable assignments for all unassigned variables
 - is-goal(n): All variables assigned satisfying all constraints?
 - path-cost(n): any constant value
- Which search algorithm?
- □ Run time?

CSPs as Search ("D")

□ For uninformed search formulation we need:

{state₀, successors(n), is-goal(n), path-cost(n) }

- state: Assignments for each variable.
- state₀: No variables yet assigned
- successors(n): All consistent possible variable assignments for all unassigned variables
- is-goal(n): All variables assigned?
- path-cost(n): any constant value
- □ Run time?

Another Key Observation

- ☐ The consistency of an assignment depends only on the values assigned to the variables
- The order in which the variables were assigned is irrelevant! (Commutivity)
 - Ignoring this leads to additional n! complexity
 - Solution: expand only one variable per node.

CSPs as Search ("C")

- □ For uninformed search formulation we need: {state₀, successors(n), is-goal(n), path-cost(n) }
 - state: Assignments for each variable.
 - state₀: No variables yet assigned
 - successors(n): All consistent possible variable assignments for a single unassigned variables
 - is-goal(n): All variables assigned?
 - path-cost(n): any constant value
- Run time?

Picking which variable to expand

- Picking next variable arbitrarily is often inefficient
- MRV (minimum remaining values) heuristic
 - Choose variable with fewest legal values remaining
 - aka most constrained variable
 - If any variable has no legal values, MRV will choose that and detect failure immediately
- Degree heuristic
 - choose variable with largest number of constraints on unassigned variables

How many values remain?

- How do we compute which values remain for a variable?
 - Determining this exactly requires solving the problem!
 - How can we efficiently reduce the size of the domain?

How many values remain?

- Forward Checking
- Arc Consistency
- k-Consistency
- MAC Consistency

Don't worry, these are all basically the same idea, applied to varying extremes!

Forward Checking (FC)

- □ Whenever a variable *X* is assigned
 - Examine each unassigned variable *Y* connected to *X* by a constraint
 - Delete from *Y*'s domain any value inconsistent with the value chosen for *X*
 - If assignment becomes impossible (anywhere), backtrack.

Arc Consistency

- Basic idea:
 - Whenever we reduce the domain for a node, reprocess the edges it's connected to.
 - Reprocessing: for an edge between (A,B)
 - remove any values from Dom{A} for which there is no value in Dom{B} that satisfies the edge.
 - and vice-versa
 - (If domains got smaller, we must reprocess more edges!)
- Arc Consistency is very powerful
 - Can solve many problems by itself!

Arc Consistency: Run-Time

- Processing a single arc:
 - O(d²): (for each value in A, check each value in B)
- Each arc processed at most _____ times
 - 2d-1: Arcs only reprocessed when Dom{A} or Dom{B} gets smaller... at worst one value at a time. (But we know to stop when Dom{}=0).
- At most arcs/edges (fully connected)
 - n(n-1)/2 (fully connected)
- □ Total runtime: O(n²d³)
 - Remember: CSP includes 3SAT, which is NP-complete.
 - How can Arc Consistency be polynomial time?

k-Consistency

- □ *k*-consistent:
 - for any consistent assignment of k-1 variables, exists consistent value of any kth
- □ Strongly *k*-consistent:
- Special cases
 - \blacksquare k = 1: node consistency (maintained by FC)
 - \blacksquare k = 2: arc consistency
 - k = n: Problem is (almost) solved.
- Can choose to enforce higher-order consistency after each assignment.
 - Albeit at greater computational costs.

Your turn: Special Constraints

- Goal: Want to be able to enforce constraints at the highest possible level in the search tree in order to maximize pruning.
 - Assume all variables have an integer domain {1,9} and that you know the current set of permissible values for each variable.
 - Reformulate these constraints so that they can be applied as early as possible in the search tree:
 - (Note: there may be different constraints that you can apply at different levels!)
 - Assume domain of all variables is initially {1-9}
 - 1. All-Different(x₁, x₂, x₃, x₄)
 - 2. All-Different(x₁, x₂, x₃, x₄, x₅, x₆, x₇, x₈, x₉)
 - 3. All-Same(x₁, x₂, x₃);
 - **4.** Sum(x_1, x_2, x_3, x_4) = 30
 - 5. Sum(x₁, x₂, x₃, x₄) is Odd
 - 6. Product(x1, x2, x3, x4) = 18
 - \blacksquare 7. IsPrime(100*x1 + 10*x2 + x3)

Challenge Winners

Your turn: Cryptarithmetic Problem

- □ What the graph look like?
- □ Solve it using MRV, forward checking
 - □ Variable ordering: {c1, c2, T, W, O, F, U, R}
 - □ Static analysis: F = 1.

(removing this problem... I've never gotten through it without making about six mistakes... very very grungy.)

Picking values

- We've talked a lot about which variable to substitute...
- Does it matter which order we try the values in the domain?
 - Yes! If we try the *likely* values first, we'll find a solution faster.

Picking Values

- Least constrained value
 - Which value rules out the fewest values nearby?
 - Pursue most promising directions first
- Other heuristics
 - Most probable *a priori*
 - Cryptograms: for a given ciphertext word, try common plaintext words first.

MRV vs. LCV?

- Minimum Remaining Values
 - Pick variable with fewest values left in its domain
- Least Constrained Value:
 - Pick value with *most* possible children
- Why do we maximize one and minimize the other?
 - To solve the problem, we must eventually assign every variable, so pick the one with the smallest branching factor (MRV).
 - Once we've picked a variable, we must ultimately rule out all possibilities, so look for most promising values first.
 - Hope that we won't have to try other values later on....

BT Refinement: Perspectives

Look Back

- Reasoning about what to do after failure
- Backjumping
 - Backtrack to some decision before most recent

Look Ahead

- Reasoning about how to make better assignments
- Examples
 - Ordering heuristics
 - Constraint propagation: FC, MAC,... MkC

Basic Back Goal

- Our goal is to jump back up as far as possible
 - Safe jump: don't miss a solution
 - Know that the sub-tree we skip is unsolvable

Basic Back Jumping

- \Box Conflict Set(X_i):
 - For each value in Dom{X_i}, what is the earliest variable that is inconsistent with it?
 - Suppose Dom $\{X_7\}$ = $\{v_1, v_2\}$
 - Suppose $X_7=v_1$ is incompatible with the current values of X_3 and X_5 . We'd have to go all the way back up to X_3 to make $X_7=v_1$ possible.
 - Suppose $X_7=v_2$ is incompatible with the current values of X_4 , X_5 , and X_6 . We'd have to go all the way back up to X_4 to make $X_7=v_2$ possible.
 - Conflict Set(X_7) = { X_3 , X_4 }
 - We backjump to X_4 : a different value of X_4 might allow an assignment of X_7 ($X_7 = V_2$).

Forward Checking?

1		1		Q	3	2
2	Q	1	1	1	1	1
3		1	Q	2	3	3
4			1	3	Q	5
5		Q	2	1	2	2
6			2		1	3
	1	2	3	4	5	6

 Q_6 conflict set = {1,2,3,5}, Jump back to 5...

6-Queens Example

1		1		Q	3	2
2	Q	1	1	1	1	1
3		1	Q	2	3	3
4			1	3		
5		Q	2	1	2	2
6			2		1	3
	1	2	3	4	5	6

Q₅: nothing left to try. back up.

1		1			3	2
2	Q	1	1	1	1	1
3		1	Q	2	3	3
4			1	3	Q	4
5		Q	2	1	2	2
6			2	Q	1	3
	1	2	3	4	5	6

Conflict-Directed Backjumping (CBJ)

- In ordinary back-jumping, we consider the conflict set at just the current search node
 - When we jump back, we "forget" why we did it.
- □ We can do better by propagating conflict set information back up the tree
 - Allows us to "remember" the constraints of *future* variable assignments.

6-Queens Example

1		1		Q	3	2
2	Q	1	1	1	1	1
3		1	Q	2	3	3
4			1	3		
5		Q	2	1	2	2
6			2		1	3
	1	2	3	4	5	6

from (Kondrak & van Beek, 1997)

Conflict-based BackJump Wrap-Up

 □ By transferring conflict set, we preserve key information across backtracks, pruning a much larger part of the search space

Sub problems

- □ Finding independent sub-problems is rare, but wonderful
 - Original problem: O(dⁿ)
 - Split in two equal-sized sub-problems: O(d^{n/2})

Your turn

□ Let 'abcde' be a 5 digit number (a!=0) such that:

□ a = 3b

□ b = 3^c

□ a = d+1

□ d = 2e

■ Is this an easy or hard problem?

Trees

- Trees are great too!
- Starting from the leaves:
 - Apply arc consistency to the parent, removing values from parent domain.
 - Now, the leaves can always find a value consistent with their parent.
- Start from the root:
 - Pick any value for the node consistent with its parent.
- Runtime?
 - \square nd² + nd

Trees

□ Let 'abcde' be a 5 digit number (a!=0) such that:

There are two solutions! 31021 and 93184

Tree-ification

- □ Pick nodes S that turn the problem into a tree
- □ For all possible assignments to S
 - Solve the induced tree
 - If solution found, return it

Local Search

- □ Local search is applicable to CSP too!
- Advantages
 - Can be very fast
 - Replanning
 - Produces solutions similar to earlier solutions

Local Search for CSPs

- Search in space of complete assignments
- Min-conflicts heuristic
 - Choose variable to reassign
 - Pick value minimizing number of conflicts with neighbors in constraint graph
- □ For *n*-queens, search time empirically independent of *n*
 - Solutions are fairly densely distributed around the state space: any initial guess never has far to go!

GSAT: Local Search for SAT

```
procedure GSAT(Σ)
  for i := 1 to Max-tries
    T := random truth assignment
    for j := 1 to Max-flips
        if T satisfies Σ then return T
        else Poss-flips := set of vars that increase satisfiability most
        V := a random element of Poss-flips
        T := T with V's truth assignment flipped
    end
end
return "no satisfying assignment found"
```

Next Time

- □ AI in Medicine, Prof. Syed
- Recitation: hints/suggestions for programming challenge!