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GRAPH PLANNING

EECS 492 Lecture 15
February 24th, 2011

State-Space Planning (Recap)
VN ——
o Planning as state-space search
o Forward (progression) from initial state
o Backward (regression) from goal
o Action is fully specified at time of introduction to
plan
o All variables bound to specific objects
o Ordering in sequence with existing actions
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GraphPlan
I
0 Blum & Furst, 1995.

o Radical reformulation of plan search space
o Applies to propositional encodings
m Must propositionalize knowledge
o Compacted state space with plan graph rep’n
o Demonstrated dramatic performance improvements

Planning Graphs

0 Interleave levels of literals and actions, related by
support, precondition, and mutex

Propositions  Propositions  Actions Propositions

true at time O true at time t-1 achievable at
time t
0 t-1 t
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GraphPlan Algorithm

A T
0 zeroth level < initial state
o Repeat until solution or “level off”:

o Extend planning graph by considering application of
actions

0 Attempt to extract solution

Example: “Dinner Date”

o Object: Take out garbage, fix dinner, wrap present.
o0 Goal: ~garb A dinner A present
o Actions: (act [preconds] [effects])
o cook [cleanH] [dinner]
o wrap [quiet] [present]
o carry [] [-garb —cleanH]
o dolly [] [-garb —-quiet]
o Initial: garb A cleanH A quiet

from Weld, “Recent advances in Al planning”, Al Magazine, 1999.
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Constructing the Plan Graph

Propositions

true at time O
Mutex

garb garb o Actions
o Inconsistent effects
~garb = Effects conflict

o Interference

[ Effects conflict w
Preconditions

cleanH cleanH b
o Competing needs
-cleanH ®m  Preconditions conflict
quiet quiet o Propositions

o Complements
~quiet o Inconsistent support

®m  Actions that generate
propositions are mutex

dinner

present

Solution?

o Can achieve

garb garb -garb, dinner,
~garb present separately
o Two “solns”:
cleanH cleanH {carry, cook, wrap}
—cleanH {dolly, cook, wrap}
o But:
iet iet
quie quie mutex(carry, cook)
~quiet mutex(dolly, wrap)
dinner
present

M. Wellman
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Extend the Plan Graph

garb garb {1 garb )
garb
cleanH cleanH )
-cleanH
quiet \quiet )
{3 7quiet
dinner / {1 dinner
present {1 present
Solution!
.
garb garb {1 garb )
-garb -garb
cleanH cleanH cleanH )
—cleanH
quiet quiet quiet 7
quiet {4 Tquiet
dinner / {1 \dinner
present {1 present
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Graph Plan: Summary

0 We still have to do a TreeSearch to extract a
solution from the graph.

o So why did we build the graph in the first place?

Planning in the real world
s

o Major challenges:

o Major parts of the world are unknown

m How do we generate plans when we don’t know what’s
around the corner?

o Very large search spaces
m Continuous-valued actions
m Interactions of multiple agents
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Conditional Planning

0 Uncertainty at plan construction time may be
resolved by execution time

o Example: shopping plan, don’t know how much milk
costs

o Problem: cannot specify complete guaranteed plan
without specifying amount of money for Pay action

o Solution: find out the price when we get to Busch’s

Conditional Planning

o Identify conditions that will be observable at execution
time
o Include construct in plan that selects course of action
based on condition:
If (OnSale(Milk))

Pay($0.99)
else

Pay($1.49)

o What if we don’t know (yet) whether the milk is on sale?
o The conditional is undefined!
o Is there an action that would resolve the uncertainty?
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Information-Gathering Action
s

CheckOnSale (x, y)
Precond: InStore(x)
Effect: KnowsWhether(“OnSale(y)”)

o KnowsWhether: eligible for conditioning
o A legal (conditional) plan:

Move(John, Store)
CheckOnSale(John, Milk)

If (OnSale(Milk) )
Pay(John, Store, $0.99)
else

Pay(John, Store, $1.49)

Continuous replanning

o Alternative:

o Construct plan for expected case
m “There are no obstacles”...
® “The milk is on sale”...

o Update plan as information is revised
m There’s a log in the road!

m The milk isn’t on sale

o Creates real-time issues
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Online replanning

Very large search spaces

N

o How many actions for path planning with a car?
o Infinite number of possible actions!

o Finding “perfect” solutions (e.g., a perfect parallel
parking maneuver) is:

m Very difficult

m Generally unnecessary

o How do we efficiently search the space?

m Make good use of our computational resources to find the
best possible plan
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Deterministic Motion Planning

o We can sometimes consider only a few discrete (say 5)
actions

o Shortcomings
o Algorithm is no longer complete (or optimal).
o If we had more CPU time, could we compute a better plan?

Non-Deterministic Planning

o How do we explore a large search tree, finding a good enough answer while
making use of what CPU time we have available?

o Consider sequences of random actions
o Build a tree of actions
= Node = state
= Edge = action

o Aplanis a sequence of actions, i.e., a path from the root (initial state) to a leaf near the
goal

o Skeleton algorithm:
o while time remains

m Select a node (call it parent) in the tree } « Implementation

= Generate a new action a here iS critical
m Create new node: child = propagate(parent, a) te
= |f action is safe

= Add node to tree

O return best plan found so far Analogous to
fringe.get()

6-Mar-11
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Non-Deterministic Planning Variants

o We'll consider three basic variants

o Random: Pick a parent node at random. Pick an action
at random.

o RRT: Pick a destination at random. Find parent node
that is closest to destination. Compute action that
goes towards destination

o RRT-Biased: Pick the destination randomly, but in a

biased way (i.e., prefer directions that are heuristically
likely to work out)

Random Policy

o Random: Pick a parent node at random. Pick an
action at random.

obstacle 1 t 1
start position - i ” "i‘ i I
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Random Policy: Analysis
Iy
0 Complete?

o Optimal?

o Practical?

24

RRT Policy

o RRT: Pick a destination at random. Find parent node
that is closest to destination. Compute action that goes
towards destination

abstacle
start position

6-Mar-11
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RRT Policy (Biased Sampling)

o RRT-Biased: Pick the destination randomly, but in a
biased way (i.e., prefer directions that are heuristically
likely to work out)

obstacle } H
start posii R INENNE

RRT Discussion

o Results in trees with specific structure:

o In 2D path planning, results in planar trees
m Paths don’t overlap each other

o This means, even in limit of t -> infinity, that not all
paths will be computed any more
o No longer complete!

o However, very useful in practice
o Explores search space very rapidly
o Good diversity of solutions
o Random restarts “fixes” completeness problem
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Continuous Replanning
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Multi-Agent Planning
s

o Adversarial
o Mini-max style searches (we saw this before)

o Cooperative
o Just a bigger search space

o Suppose depth-limited search of depth d, with one
robot that can move N, S, E, or W. Complexity?

o What if we have N robots?

o Coexist
o Model other agents’ actions as uncertain

Pursuit/Evasion
[
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Multi-agent exploration

Next time: Probability

0 Suppose the P(heads) of a coin is p.
0 What is the probability of N heads in a row?
0 What's the probability of at least 1 tails in N trials?

0 Suppose a coin comes up heads, heads, heads. What is
the probability that the fourth toss is also heads?

0 Suppose x and y are two random variables. Define
conditional, marginal, joint probability.

M. Wellman
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Review Questions
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