EECS 492 Fall 2008 Sep-17-08

Leibnitz

FOL Inference

EECS 492
February 17th, 2011

The story so far...

s
o Propositional Logic
o Model Checking
o Forward Chaining

o Backwards Chaining
o Resolution

o First-Order Logic
o Richer language with objects, relations
o We practiced writing sentences in FOL

o Reduction of FOL to PL for inference
®m Why was this problematic?

M. Wellman & E. Olson 1

EECS 492 Fall 2008 Sep-17-08

Today

I

o FOL Inference without reducing to PL
o Unification — an important building block
o Forward Chaining

o Backwards Chaining
o Resolution

Administrative

s
0 PS3 extension: until Thursday Feb 24

o Midterm Feedback
o Thanks for your comments!
o On challenge problems...
o Have more feedback? | want to hear it!

M. Wellman & E. Olson 2

EECS 492 Fall 2008

Midterm 1 Results

Count

1 | 4

Score |2.0|6.0|100(14.0(18.0|22.0 |26.0 (30.0|34.0 |38.0(42.0|46.0|50.0 [54.0|58.0 |62.0 (66.0

700 (74.0(78.0

Class median: 64.0
Class average: 63.3
Class stddev: 9.2
Num scores: 76

O

Reasoning within FOL

o In order to reason within FOL, we need to be able to deal
with Universal Instantiation without expanding for every

object.

Consider:

o S1. IsKing(x) » IsGreedy(x) => IsEvil(x)
o S2. IsKing(John)

o S3. IsGreedy(John)

o Do IsKing(John) and IsGreedy(John) match the implication?
o Can we determine this without plugging in every possible object

into S1?

M. Wellman & E. Olson

Sep-17-08

EECS 492 Fall 2008 Sep-17-08

Unification
T

o Unification: The process of making two FOL
sentences equivalent by substituting values for
variables.

o S1. IsKing(x) A IsGreedy(x) => IsEvil(x)
o S2. IsKing(John)

0 The first term of S1 and S2 can be unified with:
o {x/John}

Unification
| 8 |

NextTo(rl,r2) NextTo(A,B)

{r1/A,r2/B}

M. Wellman & E. Olson 4

EECS 492 Fall 2008 Sep-17-08

Unification Examples
N

NT(r1,C) NT(B,r3)
{(r1/B,r3/C)

NT(RoomA,n) XNT(r,Hallway(DoorOf(r)))

{ r/ RoomA,
n / Hallway(DoorOf(RoomA)) }

NT(RoomA,rl)iNT(RoomB,ﬂ)

FAIL

Most general unifier
10|

NT(r1,B) NT(r2,r3)

{r3/B,r1/A r2/A}

{r3/B,r1/r2}

Most general unifier

M. Wellman & E. Olson 5

EECS 492 Fall 2008 Sep-17-08

Unification Algorithm (sketch)
Iy

o 0 =Unify(x, y, 0)
o Return substitutions that cause x and y to match, given
already known substitutions.

o Recursively examine two sentences (x,y)
O Base case:
o If both sentences are ground terms, ensure that terms
are equal or fail.

o If one sentence is a variable, unify it with the other
expression.

o If sentences have multiple parts, recursively unify each of
the parts.

Unification Algorithm (sketch)
Iy

o Unify(King(x), King(John), {})

Functions have two parts: function symbol and
argument list

o Unify (Unify (King, King), Unify (x, John), { })
{} {x/John}

o Result: { x / John }

M. Wellman & E. Olson

EECS 492 Fall 2008 Sep-17-08

Unify (in detail)

function UNIFY(z, y,0) returns a substitution to make z and y identical
inputs: z, a variable, constant, list, or compound
y, a variable, constant, list, or compound
6, the substitution built up so far

if § = failure then return failure
else if z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,6)
else if VARIABLE?(y) then return UNIFY-VAR(y, z,6)
else if CoMPOUND?(z) and COMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UNIFY(OP[z], OP[y], 6))
else if LisT?(z) and LisT?(y) then
return UNIFY(REST[2], REST[y], UNIFY(FIRST[2], FIRST[1],))
else return failure

function UNIFY-VAR(var, z,0) returns a substitution
inputs: var, a variable
Z, any expression
6, the substitution built up so far

if {var/val} € 6 then return UNIFY(val, z,6)
else if {z/val} € 6 then return UNIFY(var, val,6)
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to 0

Adapting Modus Ponens to FOL

A T
o PL Modus Ponens a,a=

B

0 FOL M Od us Ponens King(John), King(x) => Ruler(x)
examp le Ruler(John)

0 Given that Subst(8, a’) = Subst(6, a)
a',a=pf
Subst(6, 7)

M. Wellman & E. Olson 7

EECS 492 Fall 2008 Sep-17-08

Generalized Modus Ponens

0 Given that Subst(06, a’) = Subst(6, a)

a',a=pf
Subst(0, 5)

0 Given that Subst(6, a') = Subst(6, a,) for all i

' ' '
a'a,,...o o, No, N na, =0

Subst(6,)

Your turn: Self-Shaver?

o There is a barber who shaves every man in town
who does not shave himself, and nobody else.
o Is this a paradox?

o Step 1. Translate English to FOL
o Step 2. Convert FOL to CNF
o Step 3. Perform unit resolution using unification.

m If paradox is unresolvable, then you will arrive at a
contradiction!

M. Wellman & E. Olson

EECS 492 Fall 2008 Sep-17-08

Practical FOL Inference
I

0 Classic FOL language subsets
o Datalog
o Prolog
o Inference methods
o Forward Chaining
o Backwards Chaining
o Resolution

Datalog
s

o First-order definite clauses
o disjunction of literals, exactly one positive term
o Why are these definite clauses?
m King(x) A Greedy(x) => Evil(x)
= King(John)
u Greedy(y)

o No functions allowed

o These are like clauses in PL

o Inference method?
o Forward chaining

M. Wellman & E. Olson 9

EECS 492 Fall 2008

Forward Chaining

o Just like in PL, restrictions on sentence types
allows simple inference

0 Find rules that are “triggered” by known facts
oPL:AANB=>X
o FOL: King(x) A Greedy(x) => Evil(x)
m Use Unify() to match terms

o Keep matching/generating new facts until fixed
point: we only derive facts we already know.

Example knowledge base
s

o The law says that it is a crime for an American to sell
weapons to hostile nations. The country Nono, an enemy of
America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.

o Prove: Col. West is a criminal

M. Wellman & E. Olson

Sep-17-08

10

EECS 492 Fall 2008

Forward Chaining

function FOL-FC-ASk(KB, o) returns a substitution or false

repeat until new is empty
new<+{ }
for each sentence r in KB do
(pyA... N py = q)+4 STANDARDIZE-APART()
for each 6 such that (py A ... A p,)0 = (p| A ... A D)0
for some pi,...,pl in KB
¢+ SuBsT(0, q)

if ¢’ is not a renaming of a sentence already in KB or new then do

add ¢’ to new
¢+ UNIFY(¢', @)
if ¢ is not fail then return ¢
add new to KB
return false

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
S1: American(x) A Weapon(y) 2 Sells(x,y,z) » Hostile(z) = Criminal(x)

Nono ... has some missiles
Ix Owns(Nono,x) A Missile(x):
52: Owns(Nono,M,) * Missile(M,)

... all of its missiles were sold to it by Colonel West
S3: Missile(x) A Owns(Nono,x) = Sells(West,x,Nono)

Missiles are weapons:
S4: Missile(x) = Weapon(x)

An enemy of America counts as "hostile”:
S5: Enemy(x,America) = Hostile(x)

West, who is American ...
S6: American(West)

The country Nono, an enemy of America ...
S7: Enemy(Nono,America)

M. Wellman & E. Olson

Sep-17-08

11

EECS 492 Fall 2008

Forward chaining proof
s

[American(West) | [Missile(m1) | [ownsiNono.m1) | [Enemy(Nono.America)
S6 S2 S2 S7

Forward chaining proof
s

| Weaponm1) | [Sells(West.M1.Nono) | |Has!ile(Ncmo} |
S4 3 S5
[American(West) | [Missile(m1) | [ownsiNono.m1) | [Enemy(Nono.America) |
S6 S2 S2 S7

M. Wellman & E. Olson

Sep-17-08

12

EECS 492 Fall 2008 Sep-17-08

Forward chaining proof ‘

[Weaponm1)]| [Selis(West.m1.Nano) | Hostile(Nono)
54 3 S5
|American(West) | I Missile(M1) | IOwns(Nona.MI;I |Enemﬂ Nono,America) I
S6 S2 S2 S7

Forward Chaining

o Performance:
o Worst case: only learn one thing per iteration
o p = # of predicates (“King”)
o n = # of ground symbols (“John”)
o k = maximum arity (# of arguments of predicate)

think: How many facts could we learn from Siblings(x, y)
o pnk

o Infinite domains (i.e., if KB includes Peano axioms)?
o Herbrand’s theorem to the rescue again.

M. Wellman & E. Olson 13

EECS 492 Fall 2008

Forward Chaining: Practical Issues
s

o Described approach spends lots of time trying to match premises
of implications.

o Incremental forward chaining: no need to match a rule on iteration
k if a premise wasn't added on iteration k-1

=> match each rule whose premise contains a newly added positive literal

o Database indexing allows O(1) retrieval of known facts
o e.g., query Missile(x) retrieves Missile(M,)
o What data structure do we use for the index?

o Suppose we learn Sells(West, M1, Nono). How should we
index it?

Backwards Chaining

s
o Most widely used form of automated reasoning

o Similar to PL version

o Depth first search
m What kind of problems do you anticipate?

M. Wellman & E. Olson

Sep-17-08

14

EECS 492 Fall 2008

Backward chaining algorithm
s

function FOL-BC-ASk(KB, goals, §) returns a set of substitutions
inputs: KB, a knowledge base
goals, a list of conjuncts forming a query
6, the current substitution, initially the empty substitution { }
local variables: ans, a set of substitutions, initially empty

if goals is empty then return {6}
¢’ + SuBsT(6, FIRST(goals))
for each rin KB where STANDARDIZE-APART(7) = (p1 A ... A py = q)
and 6’ < UNIFY(q, ¢') succeeds
ans + FOL-BC-ASK(KB, [p1, . - - , pa|REST(g0als)|, COMPOSE(6, 6')) U ans
return ans

SUBST(COMPOSE(8,, 8,), p) = SUBST(8,, SUBST(6,, p))

Backward chaining example
s

M. Wellman & E. Olson

Sep-17-08

15

EECS 492 Fall 2008 Sep-17-08

Backward chaining example
s

Criminal{ West)

S (x/West}

American(x) | [Weapon(y) | [setistxy.z) |

Backward chaining example
s

Criminal{ West)

S (x/West}

S6 |AmericaniWest)| | Weapon(y) |
tl

I Sells(x,y,z)

|

M. Wellman & E. Olson 16

EECS 492 Fall 2008 Sep-17-08

Backward chaining example
s

S (x/West}

Criminal{ West)

S6 |AmericaniWest)| | Weapon(y) |
}

I Sells(x,y,z)

54

Missile(y)

Backward chaining example
s

Criminal{ West)

S1 (x/West, y/M1}

S6 |AmericaniWest)| | weapon(y) |
tl

I Sells(x,y,z)

S4

Missile(y)

{wmi}
S2

M. Wellman & E. Olson 17

EECS 492 Fall 2008

Backward chaining example

S (x/West, y/M1, z/Nono}

Criminal{ West)

S6 |AmericaniWest) | | Weapon(y) | [Sells(Westmlz)]
} [Nano}| o3
S4

| Missile(y) ”Missile(MI;] IOwns(Nona.MI)
{wmi} S2
S2

Backward chaining example

Criminal{ West)

S (x/West, /M1, z/Nono}

S6 |AmericaniWest)| | Weapon(y) | [Sells(Westmlz)]
tl [#Nano}| o3
S4

Hostile(Nono)

S5

| Missile(y) ”Missile(MI;] IOwns(Nona.MI ;| |EmmwNana.Amerim; |
{wml}) 1 i1 i1
S2

M. Wellman & E. Olson

Sep-17-08

18

EECS 492 Fall 2008 Sep-17-08

Properties of backward chaining

o Depth-first recursive proof search: space is linear in
size of proof
o Incomplete due to infinite loops

o => fix by checking current goal against every goal on stack

0 Inefficient due to repeated subgoals (both success
and failure)

o = fix using caching of previous results (extra space)
o “memoization”

o Widely used for logic programming

Prolog
s
o Datalog + functions
0 Specific, widely-used syntax
o Variables are UPPERCASE
o Literals are lowercase.

criminal (X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

o Depth-first, left-to-right backwards chaining

M. Wellman & E. Olson 19

EECS 492 Fall 2008

Prolog: Failure Modes

path(X,Z) :- link(X,Z).
path(X,Z) :- path(X,Y), link(Y,Z)

Consider a path through three nodes:
a--b--c

Link(a,b)
Link(b,c)

Query: path(a,c)?

Prolog: Failure Mode

path(X,Z) :- link(X,Z).
path(X,z) :- path(X,Y), link(Y,2)

| path (a, ¥) | | 1ink (b, c)

fuil 0

link(a,Y)

{¥/Db}

M. Wellman & E. Olson

Sep-17-08

20

EECS 492 Fall 2008

Prolog: Failure Mode

path(X,Z) :- path(X,Y), link(Y,Z) (Order Switched)
path(X,z) :- link(X,Z).
a--b--c
path(a, Y) | | link (Y, c)
| path (a,Y’) | | 1ink (Y’,Y)

Resolution

o As with PL, we can use Resolution in FOL

o No restrictions on clauses (don’t need to be
definite clauses)

o Sound

o Complete? (We'll come back to this)

M. Wellman & E. Olson

Sep-17-08

21

EECS 492 Fall 2008

e d .|

Standardize Variables

0 Everything is great or something is wrong.
Vx. Great(x) v Ix. Wrong(x)

We saw that, with unification, all occurrences of a
variable need the same binding. And in
substitution, we must make the same substitution
for all occurrences of a variable.

Vx. Great(x) v Jy. Wrong(y)

Standardize Variables Example

1. A father of someone isn’t a woman.
Vx,y. -Father(x,y) v -Woman(x)

2. A mother of someone is a woman.
Vx,y. -Mother(x,y) v Woman(x)

3. Mary is the mother of Chris.
Mother(Mary,Chris)

Resolve 1&2, {x / x}

4. V'x,y. -Father(x,y) v -Mother(x,y)
Resolve 4&3, {x / Mary, y / Chris}

5. =Father(Mary,Chris)

OK, but why didn’t we conclude that Mary wasn’t anyone’s father?

M. Wellman & E. Olson

Sep-17-08

22

EECS 492 Fall 2008

Standardize Variables Example
sy .|

1. A father of someone isn’'t a woman.
Vx1,yl. -Father(x1,y1) v -Woman(x1)

2. A mother of someone is a woman.
Vx2,y2. -Mother(x2,y2) v Woman(x2)

3. Mary is the mother of Chris.
Mother(Mary,Chris)

Resolve 1&2, {x1 / x2}

4.Vx2,y1,y2. -Father(x2,y1) v -Mother(x2,y2)
Resolve 4&3, {x2 / Mary, y2 / Chris}

5. Vyl1. -Father(Mary,y1)

Better. But to ensure standardized variables, we’d even want:
4. Vx4,y4,z4. -Father(x4,y4) v -Mother(x4,z4)
5. Vy5. -Father(Mary,y5)

Conversion to Conjunctive Normal Form

o Translate bidirectionals to implications
0 Translate implications to disjunctions.

o Move negations inward
o Use De Morgan’s laws
o until only atoms are negated

o Standardize variables.

0 Eliminate existentials via skolemization.
o Drop universal quantifiers.

o Distribute and associate into CNF.

FOL
steps

M. Wellman & E. Olson

Sep-17-08

23

EECS 492 Fall 2008

Skolemization (revisited)
I

skolem

dc. IsMother(Jen,c) —> IsMother(Jen,JensKid)

skolem

V¢ dp. IsParent(p,c) —>V ¢ IsParent(Pof(c),c)
Vg,c. IsGP(g,c) = Tp. IsP(g,p) A IsP(p,c) Lo,
Vg,.c. IsGP(g,c) = IsP(g,Sk3(g,c)) A IsP(Sk3(g,c),c)

Why, in the last example, was the same Skolem function used?
Why does it take both g and ¢ as arguments?

Resolution Example

o Everyone who loves all animals is loved by someone
V x [V y Animal(y) => Loves(x,y)] => 3 y. Loves(y,x)

o Anyone who kills an animal is loved by no one.
Vx. [y. Animal(y) * Kills(x,y)] => [Vz. —Loves(z,x)
o Jack loves all animals.
Vx. Animal(x) => Loves(Jack, x)
o Either Jack or Curiosity killed the cat, who is named
Tuna.
Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
Cat(Tuna)
Vx Cat(x) => Animal(x) (background knowledge)
o Did Curiosity kill the cat?
-Kills(Curiosity, Tuna)

M. Wellman & E. Olson

Sep-17-08

24

EECS 492 Fall 2008 Sep-17-08

Conversion to CNF

o Everyone who loves all animals is loved by
someone

V x [V y Animal(y) => Loves(x,y)] => 3 y. Loves(y,x)

Resolution Example
Iy
Al. Animal(F(x)) v Loves(G(x),x)

A2. —Loves(x,F(x)) v Loves(G(x), x)

B. —Animal(y) v —Kills(x,y) v —Loves(z,x)

C. —Animal(x) v Loves(Jack,x)

D. Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
E. Cat(Tuna)

F. —Cat(x) v Animal(x)

-G. —Kills(Curiosity, Tuna)

M. Wellman & E. Olson 25

EECS 492 Fall 2008 Sep-17-08

Resolution
T

Cat(Tuna) | I = Cat(x) v Animal(x) I | Kills(Jack,Tuna} v Kills(Curiosity, Tuna) I | = Kills(Curiosity, Tuna) |
| Animal(Tuna) I |-|I.0|>cs(y.x) Vv T Animal(z) v 7 Kills(x,z) | | Kills(Jack,Tuna) |
| - Loves(y.x) v = Kills(x,Tuna) |—| Loves(x, F(x)) v Loves(G(x),x) | |-\Animal (x) v Loves(Jackx)

 Loves(y,Jack) I—vAnimal(F(Iack)) v Love:(G(Jack),Jack)l |Animal(F(x}) V Loves(G(x).x)

Loves(G(Jack),Jack)

Non-constructive Proofs

o Suppose we asked “Who killed the cat?”
o There exists a ‘W’ such that Kills(w, Tuna)
o Query: -Kills(w, Tuna)

o -Kills(w,Tuna), Kills (Jack, Tuna) v Kills(Curiosity, Tuna)

=> Kills(Jack, Tuna) { w/ Curiosity}
o Kills(Jack, Tuna), -Kills(w, Tuna)
=>{} {w/Jack }

o Resolution tells us our query is true: There does exist a w that killed
Tuna. (But what was w?)

o Note that the proof assigned multiple values to w: we can detect
this and reject those proofs!

M. Wellman & E. Olson 26

EECS 492 Fall 2008

Gottfried Wilhelm Leibnitz (1646-1716)... again!
Iy

... if we could find characters or signs
appropriate for expressing all our thoughts
as definitely and as exactly as arithmetic
expresses numbers..., we could in all
subjects in so far as they are amenable to
reasoning accomplish what is done in
Arithmetic... For all inquiries... would be
performed by the transposition of characters
and by a kind of calculus, which would
immediately facilitate the discovery of
beautiful results...

— Dissertio de Arte Combinatoria, 1666

Incompleteness Theorem

o Godel:

o In any consistent KB involving an inductive
schema, there are true sentences that cannot
be proved.

o Arithmetic defined in terms of inductive
schema

m 5(0), S(S(0)), S(s(S(0))), ...
m Godel’s theorem applies

o Bad news for Leibnitz!
o Can’t resolve every argument via inference.

o Practical limitation?

o Hasn’t stopped theorem provers from proving
many open problems!

M. Wellman & E. Olson

Sep-17-08

27

EECS 492 Fall 2008 Sep-17-08

Next Time

s
o Done with Logic...

o Planning!

M. Wellman & E. Olson 28

