

Classification and Regression

- □ We want to learn functions of the form:
 - y = f(x)
- ☐ Y is discrete valued:
 - Classification
- ☐ Y is continuous
 - Regression
- □ X can be one or more continuous or discrete values.
 - Often called "features"

Classification

 Estimate a discrete-valued quantity in terms of a number of features

- Example: Car or Motorcycle?
 - Features:
 - Size in pixels
 - Aspect ratio
 - Average color

...

Regression

□ Example: APPL stock price

■ Features:

- Number of news articles about upcoming products
- Last quarter's revenue
- Cash on hand
- Whether Steve Jobs is CEO
- Example: Movie rating predictions
 - Features:
 - How much did the user like other movies?
 - How much did other users like this movie?

Basics

- Training dataset
 - Data used to learn our model
- Test dataset
 - □ Data used to see how well we've learned f(x)
 - Why is this separate from training data?

A trip to the classification zoo

□ kNN

Decision Trees

■ Boosting

□ SVM

Neural networks

K Nearest Neighbors

K Nearest Neighbors

- ☐ Given feature vector **x**, estimate y based on previously seen examples close to **x**
- K-Nearest Neighbors
 - Find k closest examples
 - Majority vote
 - Special data structures make nearest-neighbor lookups relatively fast. (How would you do it?)
- Very simple, effective, little parameter tuning
 - □ A good "first try" method

Nearest Neighbor: A problem

10

- □ Predict MPG given:
 - Feature 1: # of cylinders
 - Feature 2: Car mass (kg)
 - Distance = $(c_i c_j)^2 + (m_i m_j)^2$
- What happens?
 - # of cylinders doesn't matter much at all!
 - Scaling matters!
 - Normalization

Decision Trees

Decision Trees

□ Classify attribute vectors into two or more classes

□ Which boolean functions can we learn?

(Large A ¬Yellow) v (¬Large A Spotted A OnPizza)

OnPizza,

Yes

from Ginsberg, Essentials of AI

No

OnPizza

No

Building Decision Trees

Yes

No

- □ Given set of examples, derive consistent decision tree
- □ Idea: just include path for each positive example
 - What's wrong with this?
 - How can we do better?

Ockham's Razor

"Pluralitas non est ponenda sine neccesitate"
—William of Ockham, 14th century

- Plurality should not be posited without necessity
- □ Prefer the simplest consistent hypothesis
- □ Allows for generalization

Building Decision Tree

- Bad news
 - Finding smallest possible tree intractable
- Greedy approach
 - Starting from root (containing all examples)
 - Until stuck:
 - Pick a node in which not all examples are the same
 - (And at least one attribute is left)
 - Pick feature most effective in distinguishing among examples
 - Split node using feature.

Mushroom Instances

Pattern	Size	Color	OnPizza	Edible
Spotted	Large	Yellow	Yes	NO
Spotted	Large	Yellow	No	NO
Spotted	Large	NY	Yes	YES
Spotted	Large	NY	No	YES
Spotted	Small	Yellow	Yes	YES
Spotted	Small	Yellow	No	NO
Spotted	Small	NY	Yes	YES
Spotted	Small	NY	No	NO
No Spots	Large	Yellow	Yes	NO
No Spots	Large	Yellow	No	NO
No Spots	Large	NY	Yes	YES
No Spots	Large	NY	No	YES
No Spots	Small	Yellow	Yes	NO
No Spots	Small	Yellow	No	NO
No Spots	Small	NY	Yes	NO
No Spots	Small	NY	No	NO

Decision Tree Learning Algorithm

```
function DTL(examples, attrs, default) returns a decision tree
  if examples is empty then
      return default
  else
       if all examples have same classfon then
          return classfcn
  else
       if attrs is empty then
          return Majority(examples)
      best \leftarrow Choose-Attribute(attrs,examples)
      tree ← a new decision tree with root best
      for each value v_i of best do
          examples_i \leftarrow \{elements of examples with best = v_i\}
          subtree \leftarrow DTL(examples, attrs-best, Majority(examples))
          add a branch to tree with label v_i and subtree subtree
  return tree
```

Choose-Attribute

- Best case?
 - Attribute fully resolves classification
- Worst case?
 - Attribute isn't correlated with classification
- Information gain
 - Measures discrimination value of attribute
 - Based on information-theoretic characterization of remaining uncertainty

Measuring Information Value

- Consider binary event with probability p.
- How much information do we get from the outcome?
 - $\square p = 1$ or 0. Already knew it, **no new information**.
 - p = 1/2. Maximal information from event: **1 bit**.

$$I(p) = \log_2 \frac{1}{p(x)}$$

$$H(x) = E\left[\log_2 \frac{1}{p(x)}\right] = \sum_i p(x_i) \log_2 \frac{1}{p(x_i)}$$

Information Gain

- Before observing attribute, suppose we have *p* positive examples, *n* negative.
 - H(x) = H(coin with prob p/(p+n)) -> lazy notation -> <math>H(p/(p+n))
- After observing binary attribute, we have four categories
 - Attribute is true for pos/neg examples: p_t, n_t
 - Attribute if false for pos/neg examples: p_f, n_f

$$H(x|z) = \frac{p_t + n_t}{p + n} H\left(\frac{p_t}{p_t + n_t}\right) + \frac{p_f + n_f}{p + n} H\left(\frac{p_f}{p_f + n_f}\right)$$

- □ Strategy: pick an attribute that maximizes our information gain:
 - \blacksquare H(x) H(x|z)

Calculating Initial Information

Initially:

$$I(5/12) = -5/12 \log_2 (5/12) - (7/12) \log_2 (7/12)$$
$$= -5/12(-1.263) - 7/12(-0.778)$$
$$= .980$$

Fair amount of uncertainty!

Attribute Information Calculations

After observing "Large" (remainder): (6/12) H(4/6) + (6/12) H(1/6) = .784So Gain(Large) = .980 - .784 = .196

After observing "Spotted" (remainder): (6/12) H(3/6) + (6/12) H(2/6) = .959 So Gain(Spotted) = .980 - .959 = .021

After observing "Yellow" (remainder): (4/12) H(0) + (8/12) H(5/8) = .636 So Gain(Yellow) = .980 - .636 = .354

After observing "OnPizza" (remainder): Same as Spotted.

So, split on Yellow: positive = NO, negative is 8 cases.

Remaining Mushroom Instances

Pattern	Size	Color	OnPizza	Edible
Spotted	Large	Yellow	Yes	NO
Spotted	Large	Yel ow	No	NO
Spotted	Large	ΝY	Yes	YES
Spotted	Large	NΥ	No	YES
Spotted	Small	Yel ow	Yes	YES
Spotted	Small	Yel ow	No	NO
Spotted	Small	NΥ	Yes	YES
Spotted	Small	NΥ	No	NO
No Spots	Large	Yel ow	Yes	NO
No Spots	Large	Yel ow	No	NO
No Spots	Large	NΥ	Yes	YES
No Spots	Large	NΥ	No	YES
No Spots	Small	Yel ow	Yes	NO
No Spots	Small	Yellow	No	NO
No Spots	Small	ΝY	Yes	NO
No Spots	Small	N Y	No	NO

Measuring Information Value

```
Now, initially 5 positive and 3 negative examples, so: I(5/8) = .95443
After observing "Large" (remainder): (4/8) I(0) + (4/8) I(1/4) = .40564
So Gain(Large) = .95443 - .40564 = .54879
After observing "Spotted" (remainder): (4/8) I(3/4) + (4/8) I(2/4) = .90564
So Gain(Spotted) = .95443 - .90564 = .04879
After observing "OnPizza" (remainder):
```

So, split on Large: positive = Yes, negative is 4 cases.

Same as Spotted.

Measuring Information Value

```
Now, initially 1 positive and 3 negative examples, so: I(1/4) = .81128
After observing "Spotted" (remainder): (2/4) I(1/2) + (2/4) I(0) = .5
So Gain(Spotted) = .81128 - .5 = .31128
After observing "OnPizza" (remainder): Same as Spotted.
```

So, arbitrarily split on Spotted: positive = 2 cases, negative is No.

Boosting

- Combine predictions from multiple hypotheses
 - May be produced by different learning algorithms
 - Or variations of same algorithm
- □ To the extent errors are *independent*, hypotheses are complementary
- Combination more likely to be right than any individual hypothesis

Simple Majority Voting

- □ Build M simple classifiers (e.g. M=5)
 - Suppose (optimistically) that each has an error rate P.
 - Ensemble is wrong only when three or more classifiers are wrong:
 - $P_M = (5C3) P^3 (1-P)^2 + (5C4) P^4 (1-P) + P^5$
 - Suppose P = 0.1. Estimate P_M .
- Why is independence assumption optimistic?

Boosting

- Requires: learning method operating over weighted training set.
 - Method attempts to minimize weighted error
 - E.g., decision stumps: decision trees with only one attribute test
- Approach
 - Modify weights over time to reward good performance over "difficult" instances
 - Combine hypotheses derived in each iteration

Boosting Algorithm

- □ W(x) is the distribution of weights over the N training instances $\sum W(x_i)=1$
- □ Initially assign uniform weights $W_0(x) = 1/N$ for all x, step k=0
- □ At each iteration *k* :
 - □ Find hypothesis $H_k(x)$ with minimum error ε_k using weights W_k
 - Compute $a_k = \frac{1}{2} \log \frac{1 e_k}{e_k}$ What is the behavior of a_k ?
 - Update weights of every training example
 - Correctly labeled points: $W_{k+1} = W_k * exp(-a_k)$
 - Incorrectly labeled points: $W_{k+1} = W_k * \exp(a_k)$
- \Box $H_{FINAL}(x) = sign [\sum \alpha_i H_i(x)]$

AdaBoost (Example) + + + - Can you find a reasonable decision stump? Original Training set: Equal weights for all training samples Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

Aushroom Instances					
Pattern	Size	Color	OnPizza	Edible	
S	L	Y	Y	No	
S	L	N	Y	Yes	
S	L	N	N	Yes	
S	S	Y	N	No	
S	S	N	Y	Yes	
S	S	N	N	No	
N	L	Y	N	No	
N	L	N	Y	Yes	
N	L	N	N	Yes	
N	S	Y	Y	No	
N	S	N	Y	No	
N	S	N	N	No	

Computing Weighting

Hypothesis is: Yellow=Not edible, ~Yellow=Edible $\epsilon 1 = \sum w(incorrect) = 1/12 + 1/12 + 1/12 = 1/4$ $\alpha 1 = 1/2 \ln(3/1) = .55$ $w'(correct) = Cn(1/12)(e^{-.55}) = (.048)Cn$ $w'(incorrect) = Cn(1/12(e^{.55}) = (.144)Cn$

Cn normalizes so it is 1.1574 w'(correct) = .0555 w'(incorrect) = .1666

			Mushroom Instances					
Pattern	Size	Color	OnPizza	Edible				
S	L	Y	Y	No	.0555			
S	L	N	Y	Yes	.0555			
S	L	N	N	Yes	.0555			
S	S	Y	N	No	.0555			
Š	S	N	Y	Yes	.0555			
S	S	N	N	No	.1666			
N	L	Y	N	No	.0555			
N	L	N	Y	Yes	.0555			
N	L	N	N	Yes	.0555			
N	S	Y	Y	No	.0555			
N	S	N	Y	No	.1666			
N	S	N	N	No	.1666			

Computing Weighting

Hypothesis is: Large=Yes, ~Large=No

$$\varepsilon 2 = \sum w(incorrect) = (2 * .0555) + (1 * .0555) = .1665$$

$$\alpha 2 = \frac{1}{2} \ln(.8335/.1665) = .80$$

What does AdaBoost actually do?

46

□ It's iteratively finding weights that minimize the exponential loss function [Collins 2002]

$$\sum_{i} e^{-y_i f_{\lambda}(x_i)}$$

where
$$f_{\lambda}(x) = \sum a_t h_t(x)$$

- (Now those exponential re-weightings make a bit more sense!)
- □ Is that what we want?

Neural Network

Neural Networks

- A good world model often has several interacting processes
 - Bayes nets, for example
 - Inputs = Earthquake, Burglary
 - Outputs = John/Mary calls
 - Hidden nodes moderate influence between other nodes
 - Alarm
- □ Conceptual idea: perhaps hidden nodes are there, even if we don't know what they are
 - Can we assume the presence of hidden nodes and learn their behavior

Brain Inspiration

- It is hard to make a machine behave intelligently
- □ Approach: reverse engineering!
- Problem: we don't really know all about how brains work, either

Neurons

- □ Brains are made out of neurons.
- \square Lots of them (~10¹¹)
 - Highly connected
 - Really slow (~1ms)

- Cartoon version
 - Neuron "fires" along axon given sufficient signal from dendrites

McCulloch-Pitts Model

- □ (1943) Neuron as threshold unit
- Output is one iff weighted sum of inputs exceeds threshold

- \square $in_i = \sum_j W_{j,i} a_j$
- $\Box g$
- $\Box a_i = g(in_i)$

input fn

activation fn

output

Activation Functions

- Step function
 - g(x) = 1 iff x > 0, else 0.
- □ Sigmoid
 - $g(x) = 1/(1 + e^{-x})$

M. Wellman

27

EECS 492 Fall 2008

Neural Networks

Collection of units, connected together

Recurrent: cycles allowed Feedforward: no cycles

Layered: can partition into strata

Perceptrons

□ (Rosenblatt, 1950s)

□ Set of units in a single feedforward layer

(inputs connected directly to outputs)

$$out = Step_0 \left(\sum_{j} W_{j} x_{j} \right) = Step_0 \left(\mathbf{W} \cdot \mathbf{x} \right)$$

Output is 1 iff: $\mathbf{W} \cdot \mathbf{x} \ge 0$

For two inputs:

$$W_1 x_1 + W_2 x_2 \ge W_0$$

$$x_2 \ge \frac{W_0}{W_2} - \frac{W_1}{W_2} x_1$$

Perceptron Limitations

Can't learn functions that aren't linearly separable

□ But, we can learn some "hard" functions easily!

Perceptron Learning

- □ Suppose we have weights **w**
- □ Observe **x**_i, y_i
- What is the error?

$$e = y_i - g(\mathbf{w} \cdot \mathbf{x_i})$$

□ Squared error:

$$e^2 = (y_i - g(\mathbf{w} \cdot \mathbf{x_i}))^2$$

Perceptron Learning

- □ Squared error: $e^2 = (y_i g(\mathbf{w} \cdot \mathbf{x_i}))^2$
- □ How do we minimize the squared error?
 - We can adjust w's:
 - \Box de²/dw_i =
- □ Adjusting w_i in the *opposite* direction will reduce e^2 w_i ' = w_i $\delta e^2/\delta w_i$ (????)
- □ How big a step should we take?

Perceptron Learning

- □ How big a step should we take?
 - Could we compute how big a step would reduce the error to zero?
 - Do we really want to fit *this* training example?
- $\ \square$ Learning rate: α

$$w_j' = w_j + \alpha \delta e^2 / \delta w_j$$

Learning Rate

- \square What should α be?
 - □ Hard to pick... must tune.
- Stochastic Gradient Descent
 - □ Learning rate *schedule*
 - Fancier strategies, e.g. search then converge

Perceptron Learning Wrap-Up

- □ Repeat
 - □ Pick an example x_i, y_i
 - □ Compute error: $e = y_i g(\mathbf{w} \cdot \mathbf{x_i})$
 - For each input j:

$$w_j' = w_j + \alpha \delta e^2 / \delta w_j$$

- □ Hill Climbing iterative improvement
 - □ Given small enough a, it will converge.
- ☐ A bit of terminology:
 - Epoch: do an update for every example

Limitations

- Many (most?) interesting functions not linearly separable
 - From late 1960s, interest in perceptrons waned
- Can get around expressive limitations with multilayer networks

Learning Multilayer Networks

- More difficult, because we do not know what hidden units should represent.
- □ Multiple weights between every input and output.
- □ Credit (blame) assignment problem.
- □ (Re)discovery of backpropagation in 1980s led to resurgent interest in neural networks.

Back-propagation

- Basic idea:
 - Compute effect of every weight on output.
 - Work backwards from output to input
 - Similar to chain rule.

 If output is wrong value, move weights in –gradient direction.

input hidden output

Backpropagation Updates

For output unit

$$W_{j,i} \leftarrow W_{j,i} + \alpha \, a_j \, Err_i \, g'(in_i) = W_{j,i} + \alpha \, a_j \Delta_i$$

- For hidden units
 - need way to take share of blame for output error among its successors
 - make it proportional to weight

$$\Delta_{j} = Err_{j} g'(in_{j}) = g'(in_{j}) \sum_{i} W_{j,i} \Delta_{i}$$

$$W_{k,j} \leftarrow W_{k,j} + \alpha a_{k} \Delta_{j}$$

Backpropagation

For each example:

- Forward pass
 - Compute activation level for each unit
- Backward pass
 - \blacksquare Compute error and \triangle values for output layer
 - $\hfill\Box$ Update weights to output layer, pass back Δ values to previous layer
 - For each node in previous layer, use Δ values from succeeding layer to compute Δ values for itself, update incoming weights, pass back Δ values to its preceding layer...

Backpropagation Analysis

- A form of hill-climbing (gradient descent), just like perceptron algorithm
- No convergence guarantees,
 - due to local minima
 - ridges also slow convergence
- General problem of finding consistent weights is NPcomplete
- Performance dependent on network structure
 - Need sufficient hidden nodes to express target
 - Too many leads to overfitting, slow training

Neural Networks

- Appealing due to brain analogy
- Other advantages
 - Simplicity, expressiveness,
 - Ability to handle noise
- Disadvantages
 - Opaque: cannot be used in some applications due to regulatory constraints!
 - Black art of designing structures and tuning parameters
- Ultimately, one of many forms of nonlinear regression

SVMs

73

Support Vector Machines

- □ All about separability:
 - Given a bunch of features, find the (linear) separator that maximizes the margin.
- This can be formulated as a quadratic programming problem

SVMs: Features

75

☐ The key is to find features that make the data linearly separable

□ When viewed from the original space, these features can be complex looking.

SVMs: Kernel Trick

76

- □ Where do we get the "right" features?
 - In higher dimensions, data tends to become linearly separable, even if the features aren't particularly clever.
- □ Idea: generate features from our data
 - **E.g.**, compute the dot product of every point x_i with respect to x_{17}
 - In fact, let's make every point its own feature
- □ Linear separators can be efficiently computed for features of this form
 - "Kernel Trick"
 - We won't worry about mechanics

Next Time

77

- Learning Theory
 - Why does any of this work?
- Statistical Learning

Review questions

78