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Kalwar Update
Last Tournament Results

0 1 2 3 4 5 6 7 8 Total

ebolson (0) --- 0.580.700.730.901.000.98 1.00 1.00 6.875
grwright (1)0.43 --- 0.600.880.830.881.00 1.001.00 6.600
ryjust (2)0.300.40 --- 0.880.900.830.931.001.00 6.225
DaffyDuck (3)0.28 0818088 --- 0.580.680.931.001.004.700
petnic (4)0%00:18 050 0.43 - 0.650.880.981.004.300
attang (5)0l00 0918 0118 0.330.35 - 0.931.001.00 3.900

DrunkenDuck (6) 0I0S BI00 0107 0108 0518 0107 --- 0.950.932.250
saluber (7) 5100 0100 5106 0100 BI6S BIBE PGS --- 1.00 1.075
sittingDuck (8) B0 B0 G100 G160 IO6 BI66 6108 BI68 - 0.075
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Classification and Regression

JAEE

0 We want to learn functions of the form:
'y = f(x)

0 Yis discrete valued:
o Classification

o Y is continuous

o Regression

o X can be one or more continuous or discrete values.
o Often called “features”

Classification
a4 |
0 Estimate a discrete-valued quantity in terms of a

number of features

o Example: Car or Motorcycle?

m Features:
= Size in pixels
m Aspect ratio

= Average color
...
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Regression
s 4 |

o Estimate a continuous-valued quantity in terms of a number
of features

AAPL

o Example: APPL stock price

O Features: Il
m Number of news articles about upcoming products

® Last quarter’s revenue

m Cash on hand

m Whether Steve Jobs is CEO
o Example: Movie rating predictions
o Features:

® How much did the user like other movies?
® How much did other users like this movie?

Basics
e !

o Training dataset
o Data used to learn our model

0 Test dataset
o Data used to see how well we’ve learned f(x)
o Why is this separate from training data?
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A trip to the classification zoo
4 |
o kNN ’
o Decision Trees

01 Boosting

o SVM

o Neural networks

K Nearest Neighbors
s |

5-Apr-11
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K Nearest Neighbors
VN ——
0 Given feature vector x, estimate y based on
previously seen examples close to x
0 K-Nearest Neighbors
o Find k closest examples
m Majority vote
o Special data structures make nearest-neighbor
lookups relatively fast. (How would you do it?)
o Very simple, effective, little parameter tuning
o A good “first try” method

Nearest Neighbor: A problem
o d |
o Predict MPG given:
o Feature 1: # of cylinders
o Feature 2: Car mass (kg)

o Distance = (¢;-c))* + (mi-m)?

o What happens?
o # of cylinders doesn’t matter much at all!

o Scaling matters!
m Normalization

M. Wellman 5
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Decision Trees
T

Decision Trees

g |
o Classify attribute vectors into two or more classes

o1 Which boolean functions can we learn?

M. Wellman 6
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Edible Mushrooms?
(.

JlLarge

Yellow Spotte Wd
No Yes No
OnPizza -OnPizza
Yes No

(Large A ~Yellow) v (7Large A Spotted A OnPizza)

from Ginsberg, Essentials of Al

Building Decision Trees

0 Given set of examples, derive consistent decision
tree

0 ldea: just include path for each positive example
o What’s wrong with this?
o How can we do better?
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Ockham’s Razor
A T

“Pluralitas non est ponenda sine neccesitate”
—William of Ockham, 14th century

e Plurality should not be posited without necessity

o Prefer the simplest consistent hypothesis
o Allows for generalization

Building Decision Tree

0 Bad news
o Finding smallest possible tree intractable

0 Greedy approach
o Starting from root (containing all examples)

o Until stuck:

m Pick a node in which not all examples are the same
= (And at least one attribute is left)

m Pick feature most effective in distinguishing among
examples

m Split node using feature.

M. Wellman 8
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Spotted Large Yellow Yes NO
Spotted Large NY Yes YES
Spotted Large NY No YES
Spotted Small Yellow No NO
Spotted Small NY Yes YES
Spotted Small NY No NO
No Spots Large Yellow No NO
No Spots Large NY Yes YES
No Spots Large NY No YES
No Spots Small Yellow Yes NO
No Spots Small NY Yes NO
No Spots Small NY No NO

Decision Tree Learning Algorithm
g |

function DTL(examples,attrs,default) returns a decision tree

if examples is empty then
return default
else
if all examples have same classfcn then
return classfcn
else
if attrs is empty then
return Majority(examples)
else
best <— Choose-Attribute(attrs,examples) Key implementation detail
tree <— a new decision tree with root best
for each value v; of best do
examples; <— {elements of examples with best = v;}
subtree <— DTL(examples,attrs—best,Majority(examples))
add a branch to tree with label v; and subtree subtree
return tree

5-Apr-11
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Choose-Attribute

0 Best case?

o Attribute fully resolves classification

o Worst case?

o Attribute isn’t correlated with classification

o Information gain

o Measures discrimination value of attribute
o Based on information-theoretic characterization of

remaining uncertainty

Choose-Attribute in DTL
Iy
00000 0000
0000000 0000000

o000 O} 00 o0
oo 00000 C 1) 0000
0000 0000
0000000 0000000
Yellow aYellow W
0000 000 @0
0000 C T 000 0000

M. Wellman
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Measuring Information Value

o Consider binary event with probability p.

o How much information do we get from the
outcome?
op =1or0. Already knew it, no new information.
o p = 1/2. Maximal information from event: 1 bit.

I(p) = log, ﬁ

1 1
H(zx)=F [log2 m] = zl:p(xl) log,

p(wi)

Information Gain

o Before observing attribute, suppose we have p positive
examples, n negative.

o H(x) = H( coin with prob p/(p+n) ) -> lazy notation -> H(p/(p+n))

o After observing binary attribute, we have four categories
o Attribute is true for pos/neg examples: p,, n,
o Attribute if false for pos/neg examples: p;, n;

H($|Z):pt+ntH< P >+pf+an( ps )

p+n P+ 1y p+n pr+ny

o Strategy: pick an attribute that maximizes our information gain:
o H(x)—H(x|z)

5-Apr-11
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Choose-Attribute in DTL
I
00000 00000
0000000 0000000
0000 @) Q00 o0
1 00000 000 0000
Q0000 00000
0000000 0000000
Yellow SYellow W
00000 000 @0
0000 000 000 0000

Calculating Initial Information
I
Initially:

I(5/12) =-5/12 log, (5/12) — (7/12) log, (7/12)
=-5/12(-1.263) — 7/12(-0.778)
=.980

Fair amount of uncertainty!

5-Apr-11
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Attribute Information Calculations
T

After observing “Large” (remainder):
(6/12) H(4/6) + (6/12) H(1/6) = .784
So Gain(Large) =.980—.784 = .196

After observing “Spotted” (remainder):
(6/12) H(3/6) + (6/12) H(2/6) = .959
So Gain(Spotted) =.980 —.959 = .021

After observing “Yellow” (remainder):
(4/12) H(0) + (8/12) H(5/8) = .636
So Gain(Yellow) =.980 - .636 = .354

After observing “OnPizza” (remainder):
Same as Spotted.

So, split on Yellow: positive = NO, negative is 8 cases.

. o
Remaining Mushroom Instances

T

Spotted Large NY Yes YES

Spotted Large NY No YES

Spotted Small NY Yes YES

Spotted Small NY No NO

No Spots Large NY Yes YES

No Spots Large NY No YES

No Spots Small NY Yes NO

No Spots Small NY No NO

5-Apr-11
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Measuring Information Value

I
Now, initially 5 positive and 3 negative examples, so:
1(5/8) = .95443
After observing “Large” (remainder):
(4/8) 1(0) + (4/8) I(1/4) = .40564
So Gain(Large) = .95443 - .40564 = .54879
After observing “Spotted” (remainder):
(4/8) 1(3/4) + (4/8) 1(2/4) = .90564
So Gain(Spotted) = .95443 - .90564 = .04879
After observing “OnPizza” (remainder):
Same as Spotted.
So, split on Large: positive = Yes, negative is 4 cases.

Measuring Information Value

g |
Now, initially 1 positive and 3 negative examples, so:
1(1/4) = .81128
After observing “Spotted” (remainder):
(2/4) 1(1/2) + (2/4) 1(0) = .5
So Gain(Spotted) =.81128 - .5=.31128
After observing “OnPizza” (remainder):
Same as Spotted.

So, arbitrarily split on Spotted: positive = 2 cases,
negative is No.

5-Apr-11
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Induced Tree

Yo
e Spotted

OnPizza OnPizza

Yes No

(=Yellow A Large ) v (—=Yellow A —Large A Spotted A OnPizza)

5-Apr-11
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Boosting
s |

o Combine predictions from multiple hypotheses
o May be produced by different learning algorithms
o Or variations of same algorithm

0 To the extent errors are independent, hypotheses
are complementary

o Combination more likely to be right than any
individual hypothesis

Simple Majority Voting
4|
o Build M simple classifiers (e.g. M=5)

o Suppose (optimistically) that each has an error rate P.

o Ensemble is wrong only when three or more classifiers
are wrong:
m P, = (5C3) P3 (1-P)2 + (5C4) P* (1-P) + PS

o Suppose P =0.1. Estimate P,,.

o Why is independence assumption optimistic?

5-Apr-11
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Boosting

o Requires: learning method operating over
weighted training set.

o Method attempts to minimize weighted error

o E.g., decision stumps: decision trees with only one
attribute test

0 Approach

o Modify weights over time to reward good
performance over “difficult” instances

o Combine hypotheses derived in each iteration

Boosting Algorithm

o W(x) is the distribution of weights over the N training
instances ) W(x,)=1

o Initially assign uniform weights W,(x) = 1/N for all x, step
k=0
o At each iteration k :
o Find hypothesis H,(x) with minimum error g, using weights W,

(x)

1—ep
o Compute ax = 3 log

What is the behavior of a,?
€k
o Update weights of every training example

= Correctly labeled points: W,,; = W, *exp(-a,)

= Incorrectly labeled points: W,,; = W, * exp(a)

O Hepa(X) =sign [ 3 a;H;(x) ]

5-Apr-11
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AdaBoost (Example)
Iy

Dyl +

Can you find a
reasonable
decision stump?

Original Training set : Equal weights for all training samples

Taken from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

M. Wellman

AdaBoost (Example)
g |

a = %ln(

W = CaWome®™ = (1.091).1(.654653) = 0714

. £1=0.30
i .
(/1:().—]-2
+. -
/ll £ = Ew(incorrect)=0.3

1-¢

17
“Linedy -2
PR Y

ROUND 1

W = CoyWaoma@™ = (1.091).1(1.527525) = .1667

Covorm

al

teation =1/ Ew'=1.091
examples

5-Apr-11
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AdaBoost (Example)

£1=021

/12

&, =~ (=52
2 £, 2

1, .79
= —In(-=) =.65
) n(.21)

ROUND 2

[)3 + -

£, = E w(incorrect) = 0.21
incorrect

AdaBoost (Example)

ROUND 3

5-Apr-11
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AdaBoost (Example)

Hn
final

=sign| 0.42 +0.65 +0.92

Mushroom Instances
I
Pattern Size Color OnPizza Edible
S L Y Y No
S L N Y Yes
S L N N Yes
S S Y N No
S S N Y Yes
S S N N No
N L Y N No
N L N Y Yes
N L N N Yes
N S Y Y No
N S N Y No
N S N N No

5-Apr-11
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Boosting on Features

..... e=3/12 ..... e=5/12
0000000 or 0000000 or
e=9/12 e=7/12
Large JLarge Spotted ZSpotted
000 ) 00 o0
e 00000 0o 0000
00000 e=3/12 0000 e=5/12
0000000 or 000000 or

e=9/12
Yellow ZYellow

e=7/12

20nPizza

0000 000 @0
0000 000 000 0000
Computing Weighting

Hypothesis is: Yellow=Not edible, ~Yellow=Edible
el =>Sw(incorrect) =1/12+1/12+1/12="%

al=%1In(3/1)=.55

w’(correct) = Cn(1/12)(e ~>°) = (.048)Cn
w’(incorrect) = Cn(1/12(e °) = (.144)Cn

Cn normalizes so it is 1.1574

w’(correct) = .0555
w’(incorrect) = .1666

M. Wellman

5-Apr-11
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A T
Pattern Size Color OnPizza Edible
S L Y Y No 10555
S L N Y Yes 0555
S L N N Yes 0555
S S Y N No 0555
S S N Y Yes .0555
S S N N No 1666
N L Y N No 0555
N L N Y Yes 0555
N L N N Yes .0555
N S Y Y No 0555
N S N Y No .1666
N S N N No .1666

Boosting on Features (step 2)

Spotted ZSpotted

5-Apr-11
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Computing Weighting
s
Hypothesis is: Large=Yes, ~Large=No

€2 = Yw(incorrect) = (2 * .0555) + (1 * .0555) =.1665
a2 =% 1In(.8335/.1665) = .80

What does AdaBoost actually do?
45|

0 It’s iteratively finding weights that minimize the
exponential loss function [Collins 2002]

Z e~ Yifa(zi)
where f(z) = Zatht(l’)

o (Now those exponentfal re-weightings make a bit
more sense!)

o Is that what we want?

5-Apr-11
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Neural Network

d .|

Neural Networks

o A good world model often has several interacting
processes
o Bayes nets, for example

® Inputs = Earthquake, Burglary
m Outputs = John/Mary calls

o Hidden nodes moderate influence between other nodes
= Alarm

o Conceptual idea: perhaps hidden nodes are there,
even if we don’t know what they are

o Can we assume the presence of hidden nodes and learn
their behavior

5-Apr-11
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Brain Inspiration
s |

o It is hard to make a machine behave
intelligently

0 Approach: reverse engineering!

o Problem: we don’t really know all
about how brains work, either

Neurons

AT
0 Brains are made out of neurons.

0 Lots of them (~10%%)
o Highly connected
o Really slow (~¥1ms)

o Cartoon version

o Neuron “fires” along axon given sufficient signal from
dendrites

5-Apr-11
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McCulloch-Pitts Model

0 (1943) Neuron as threshold unit

0 Output is one iff weighted sum of inputs exceeds
threshold

\ out

Representing Logical Fns

/ with AND and NOT, can

represent any
combinational circuit

-0.5 (any boolean function).

=

5-Apr-11
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Slightly Generalized Model

unit i

oin=%,W,;a; input fn
og activation fn
o a;=g(in;) output

Activation Functions

0 Step function
og(x)=1iffx>0, else 0.

o Sigmoid
og(x)=1/(1+e¥)

5-Apr-11
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Neural Networks

o Collection of units, connected together

av

Recurrent: cycles allowed
Feedforward: no cycles
Layered: can partition into strata

Perceptrons

gy
o (Rosenblatt, 1950s)

o Set of units in a single feedforward layer
o (inputs connected directly to outputs)

out = StepO(E ,ijj)= StepO(W . X)
J

Output is 1 iff: W-x =0

For two inputs: Wx, +Wox, =W,
W, W
X, =———X,
W2 W2

5-Apr-11
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Perceptron Boundaries
Iy

=|=

Linear Separability
L

" l x; AND x,

@ x; OR x,
x x, IFF x,

5-Apr-11
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Perceptron Limitations
s
o Can’t learn functions that aren’t linearly separable

o But, we can learn some “hard” functions easily!

Perceptron Learning
VL —
0 Suppose we have weights w
0 Observe x;, y;

o What is the error?

e=y;,—g(w-x)

o Squared error:
e?= (y;,— g(wx;))?

5-Apr-11
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Perceptron Learning

I
0 Squared error: e?= (y,—g(w-x;,))?

o How do we minimize the squared error?
o We can adjust w's:
o de?/dw, =

0 Adjusting w; in the opposite direction will reduce e?

w; = w; - 6e?/ow;  (?7??)

o How big a step should we take?

Perceptron Learning
T I ————

o How big a step should we take?

o Could we compute how big a step would reduce the
error to zero?

o Do we really want to fit this training example?

0 Learning rate: a

wj’ =w;+a 8e2/8wj

o Yes, but what should o be?

5-Apr-11
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Learning Rate
s |

o What should o be?
o Hard to pick... must tune.

o Stochastic Gradient Descent
o Learning rate schedule
o Fancier strategies, e.g. search then converge

Perceptron Learning Wrap-Up
N
0 Repeat

o Pick an example x,, y;

o Compute error: e =y, — g(w"Xx;)

o For each input j:
w=w;ta Sez/é‘)wj

o Hill Climbing — iterative improvement
o Given small enough a, it will converge.

0 A bit of terminology:
o Epoch: do an update for every example

5-Apr-11
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Limitations
A T

o Many (most?) interesting functions not linearly
separable

o From late 1960s, interest in perceptrons waned

o Can get around expressive limitations with
multilayer networks

Multilayer Networks

With enough hidden units,
can represent any
continuous function, not
just linearly separable
ones.

input hidden output

M. Wellman 33
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Learning Multilayer Networks

o More difficult, because we do not know what
hidden units should represent.

o Multiple weights between every input and output.
o Credit (blame) assignment problem.

o (Re)discovery of backpropagation in 1980s led to
resurgent interest in neural networks.

Back-propagation

0 Basic idea:
o Compute effect of every
weight on output.

m Work backwards from
output to input

= Similar to chain rule.

input hidden output
o If output is wrong value,
move weights in —gradient
direction.

5-Apr-11
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Backpropagation Updates

0 For output unit
1/
W, <W, +aa; Err,g(in)=W, +aa,
o For hidden units

o need way to take share of blame for output error
among its successors

o make it proportional to weight

A, =Err, g(in;)= g'(inj)Ein’iAi

W, < W, +aaqA,

P

Backpropagation

For each example:
o Forward pass

o Compute activation level for each unit
o Backward pass
o Compute error and A values for output layer

o Update weights to output layer, pass back A values to previous
layer

o For each node in previous layer, use A values from succeeding
layer to compute A values for itself, update incoming weights,
pass back A values to its preceding layer...

M. Wellman
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Backpropagation Analysis

I |

o A form of hill-climbing (gradient descent), just like
perceptron algorithm

o No convergence guarantees,

o due to local minima
o ridges also slow convergence

o General problem of finding consistent weights is NP-
complete

o Performance dependent on network structure

o Need sufficient hidden nodes to express target
o Too many leads to overfitting, slow training

Neural Networks
I

o Appealing due to brain analogy
o Other advantages

o Simplicity, expressiveness,

o Ability to handle noise
o Disadvantages

o Opaque: cannot be used in some applications due to
regulatory constraints!
o Black art of designing structures and tuning
parameters
o Ultimately, one of many forms of nonlinear
regression

M. Wellman 36
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SVMs

Support Vector Machines

o All about separability:

o Given a bunch of features, ’

find the (linear) separator
that maximizes the
margin.

o This can be formulated as
a quadratic programming
problem

M. Wellman
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sd .|

0 The key is to find features that make the data
linearly separable

o When viewed from the original space, these
features can be complex looking.

SVMs: Kernel Trick

FEC 2

o Where do we get the “right” features?

o In higher dimensions, data tends to become linearly separable, even if
the features aren’t particularly clever.

o ldea: generate features from our data
o E.g., compute the dot product of every point x; with respect to x,
o In fact, let’'s make every point its own feature

o Linear separators can be efficiently computed for features of
this form

o “Kernel Trick”

o We won’t worry about mechanics

M. Wellman
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38



EECS 492 Fall 2008

M. Wellman

Next Time
4 .|
0 Learning Theory

o Why does any of this work?

0 Statistical Learning

Review questions
s qy .|

5-Apr-11
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