

Today's goals

- □ Practice understanding sentences
 - □ FOL -> English
- □ Practice translating sentences
 - English -> FOL
- Start FOL inference

Symbol Names

Compare:

- □ $\forall x$. MyFriend(x) \Rightarrow SendBirthdayCard(x)
- □ \forall y. MyFriend(y) \Rightarrow SendBirthdayCard(y)
- □ $\forall x. P0001(x) \Rightarrow P0002(x)$
- □ \forall x. MyEnemy(x) \Rightarrow SendBirthdayCard(x)

FOL to English

```
\forallm,c. IsMotherOf(c,m) \Leftrightarrow IsFemale(m) \land IsParentOf(m,c)
```

 \forall w,h. IsHusbandOf(w,h) \Leftrightarrow IsMale(h) \land IsSpouseOf(h,w)

 $\forall x. \text{ IsMale}(x) \Leftrightarrow \neg \text{ IsFemale}(x)$

 $\forall p,c. \ IsParentOf(p,c) \Leftrightarrow IsChildOf(c,p)$

 $\forall g,c. \text{ IsGrandparentOf}(g,c) \Leftrightarrow \exists p. \text{ IsParentOf}(g,p) \land \text{ IsParentOf}(p,c)$

 $\forall x,y. IsSiblingOf(x,y) \Leftrightarrow x\neq y \land \exists p. IsParentOf(p,x) \land IsParentOf(p,y)$

Your turn:

 $Is Grand Child Of, Is Great Grandparent Of, Is Brother In Law Of, Is First Cousin Of, Is Nth Cousin Of, \dots \\$

English to FOL

What's the "right" translation of the sentence "Not all students take both history and biology." ?

NotAllStudentsTakeBothHistoryAndBiology()

NotAllStudentsTakeBoth(History, Biology)

NotAllStudentsTake(History ∧ Biology)

NotAllStudentsTake(History) A NotAllStudentsTake(Biology)

- ¬AllStudentsTakeBoth(History,Biology)
- $\neg \forall x$. IsStudent(x) \Rightarrow TakesBoth(History,Biology)
- $\neg \forall x$. IsStudent(x) \Rightarrow Takes(x,History) \land Takes(x,Biology)
- $(\neg \forall x. \text{ IsStudent}(x) \Rightarrow \text{Takes}(x, \text{History})) \land (\neg \forall y. \text{Student}(y) \Rightarrow \text{Takes}(y, \text{Biology}))$

More History and Biology

- □ Not all students take both History and Biology.
- Only one student failed History.
- Only one student failed both History and Biology.
- ☐ The best score in History was better than the best score in Biology.

Temporal Sentences

- □ George is the President of the United States.
- □ The President of the United States has lived in the White House since 1803.
- □ The President of the United States has been sober since 1986.

FOL Inference: Reduction to PL

Standard PL inference rules sound for FOL as well
 E.g., modus ponens

$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

IsFriend(Arnold)
IsFriend(Arnold) ⇒ShouldSendBirthdayCard(Arnold)

Should Send Birth day Card (Arnold)

Universal Instantiation

 Replace a universally quantified variable with a ground term

$$\frac{\forall v.\alpha}{Subst(\{v/g\},\alpha)}$$

 $\forall x. \ IsFriend(x) \Rightarrow ShouldSendBirthdayCard(x)$ $IsFriend(Arnold) \Rightarrow ShouldSendBirthdayCard(Arnold)$ $IsFriend(Arnold) \qquad \qquad How should we$

ShouldSendBirthdayCard(Arnold)

How should we handle existential quantification?

Existential Instantiation

 Replace an existentially quantified variable with a Skolem constant

$$\frac{\exists v.\alpha}{Subst(\{v/Sk\},\alpha)}$$

IsFriend(x)

UI, MP

∀x. IsFriend(x) ⇒ShouldSendBirthdayCard(x)

ShouldSendBirthdayCard(F0001)

FOL Inference

- □ We can now reduce FOL to PL inference:
 - Existentially instantiate everywhere.
 - Universally instantiate with respect to every object
 - Treat resulting terms as propositions
 - E.g., "IsFriend(FatherOf(Arnold))" is just a long name for a proposition.
- Uh oh!
 - Universal instantiation explodes if we have functions!
 - IsFriend(FatherOf(FatherOf(FatherOf(...

Herbrand's Theorem

- ☐ If a KB entails A, then there is a proof involving a *finite* subset of the propositionalized knowledge base.
 - I.e., any proof requires only a finite number of f(f(f (...)))'s
- What strategy does that suggest?

Semi-Decidability

- Does KB entail A?
 - Suppose we don't find a solution at depth 1...
 - Or depth 2.
 - Or depth 3.
 - Or depth 4.
 - ...
- □ When can we state that KB does NOT entail A?
- Entailment of FOL is semidecidable: we can prove entailments, but can't disprove every non-entailed sentence.
 - Are there some non-entailed sentences that we *can* disprove?

Another problem with FOL → PL

- □ We can have an infinite number of propositions!
 - Proving statements about arithmetic
- Peano Axioms
 - NatNum(0)
 - □ \forall n. NatNum(n) => NatNum(S(n))

Today's big idea

- We can reduce FOL to PL
 - Use all of our familiar inference techniques!
- Reducing FOL to PL is often impractical
 - Universal instantiation creates many sentences and propositions.
 - Remember that inference is exponential in number of propositions. (Why?)
 - Functions create infinitely large models
 - (Herbrand's theorem rescues us a bit)
 - Peano axioms create infinitely many propositions

Next time

- □ Inference within FOL (without reducing to PL)
 - Forward/backward chaining
 - Resolution