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Local Search

 Try to iteratively improve a small number of 
solutions

 Avoid space problems entirely: maintain only one  
a finite number of solution candidates
 Perhaps only one!

 Repeatedly tweak those candidates in the hopes of 
arriving at a solution.
 How do we tweak the solutions?
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Example: 8 Queens

Find an arrangements of 

queens such that no queen 

attacks another

8 Queens Heuristic

h: number of pairs of queens that attack each other

h = 1 a local minimum h = 17
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Local Beam Search

1. Randomly generate k initial states
2. Generate successors for each of them
3. If any successor is a goal, then return it and exit
4. Otherwise put all successors into queue, and sort 

queue.
5. Remove all but the k best nodes from the queue, and go 

to step 2

 How is this different than doing k random restarts?
 Can also have the stochastic variation, where the k

nodes kept are chosen with some weighted probability 
based on heuristic value

Genetic Algorithm

 Parallel hill climbing 

 Candidate successors generated by crossover and 
mutation

 Actual successors then selected based on fitness
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GA Steps

 Initialize population of size N

 Repeat N times:

 Randomly select two “parents” from population, with 
probability proportional to fitness

 Construct “child” by crossing over parents

 Apply mutation with small probability

Crossing Over

 Randomly select crossover point.

 Child is same as parent1 up to crossover point, 
parent2 after that. 

1 1 0 1 0 0 1 0

1 0 1 0 1 0 0 0

1 1 0 0 1 0 0 0
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Genetic Algorithm: Your turn!

 You’ll need a sheet of paper and a pencil

Write down four random numbers, x1, x2, x3, and x4. 

 Each number should be between [1, 9].

 Seriously. They need to be random!

 You are our initial population!

Genetic Algorithm: Fitness

 Compute your fitness:

 (In our case, small fitnesses are good.)

 http://april.eecs.umich.edu/fitness.html
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Genetic Algorithm: Reproduction

 Who has low fitnesses?

 Sexual reproduction (without mutation) by 
crossing (x1,x2) with (x3,x4)

x1  x2  x3  x4

x1  x2  x3  x4

x1  x2 x3  x4

parents
offspring

Changing the genetic representation

 Our fitness function can be factored like this:

 What does this tell us about what our genetic 
representation should be?

x1  x3  x2  x4

x1  x3  x2  x4

x1  x3 x2  x4

parents
offspring
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Adding Mutation

 We can randomly flip bits too…

Hill Climbing

 aka Gradient descent

 Requires heuristic h measuring quality of soln

 Algorithm:

 Find all incremental modifications of candidate soln

 Pick best one

 Repeat



EECS 492 Fall 2008 Sep-17-08

M. Wellman & E. Olson 8

Example: Map Labeling
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Example: Map Labeling

Saginaw

Detroit

Flint

Grand Rapids
Pontiac

Lansing

Ann ArborKalamazoo

Fort Wayne

South Bend

Cleveland
Toledo

Bowling Green

Mansfield

Akron

Youngstown
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3SAT Example

(P1∨¬P2∨¬P3)∧(P1∨¬P2∨¬P4)∧(P1∨¬P3∨¬P4)∧

(¬P1∨P2∨¬P3)∧(P2∨¬P3∨¬P4)∧(¬P1∨P2∨¬P4)∧

(¬P1∨¬P2∨P3)∧(¬P1∨P3∨¬P4)∧(¬P2∨P3∨¬P4)∧

(¬P1∨¬P2∨P4)∧(¬P1∨¬P3∨P4)∧(¬P2∨¬P3∨P4)∧

(¬P1∨¬P2∨¬P3)

Q: What’s a good fitness function?

GSAT

procedure GSAT(φ)

for i := 1 to Max-tries

T := random truth assignment

for j := 1 to Max-flips

if T satisfies φ then return T

else Poss-flips := set of vars that increase satisfiability most

V := a random element of Poss-flips

T := T with V’s truth assignment flipped

end

end

return “no satisfying assignment found”
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Hill Climbing Terrain

 Local maxima

 Plateaux

 Ridges

Hill-Climbing: 2-d Ridge
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Stochastic Variations

 Stochastic hill climbing
 Select among positive steps at random

 Probability proportional to steepness

 Random restarts
 Repeat hill climbing from randomly chosen initial state

 Return best local maximum found

 No clear answer on how often to restart from 
scratch versus trying to “repair” a current 
candidate that’s stuck or making slow progress.

Simulated Annealing

 Hill climbing, but take worse-appearing steps with some 
probability
 Generate random neighbor
 If it is an improvement, accept;
 else accept with probability < 1

 probability decreases exponentially with the “badness” of the 
move, temperature

 Annealing: Decrease temperature gradually

 Stochastic Gradient Descent is similar
 Useful for optimization with many simultaneous “soft” 

constraints
 Temperature decreases as 1/T
 Actually takes a long time for the temperature to get really small.
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GA: Discussion

 Appealing analogy to natural selection with sexual 
reproduction

 Does it work? 

 Hard to characterize in general

 Depends crucially on string rep’n of state

 Intuition: GA maintains good “building blocks” in 
population

 Not generally better than simpler stochastic local 
search methods

Assessing Local Search

 Key advantages

Very little memory

Can often find reasonable solutions in large or 

infinite (continuous) state spaces where other 

systematic approaches are unsuitable

 Usually incomplete and not optimal
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Constraint satisfaction

 Next time…


