EECS 492 Fall 2008

M. Wellman

DECISION PROCESSES

EECS 492 Lecture 21
March 29, 2011

Administrative

FE

Count

00|38 75 (11.2(15.0(18.8(22.5|26.2|30.0|33.8 (37.5|41.2|45.0(48.8|52.5|56.2|60.0|63.8|67.5(71.2

Score -
63.8|67.5(712|75.0

3.8|7.5|11.2(150|18.8(22.5(26.2|30.0(33.8|37.5|41.2|45.0|48.8|52.5|56.2|60.0

Class median: 55.0
Class average: 52.5
Class stddev: 12.0
Num scores: 73

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Maximum Expected Utility

N

0 Rational agents maximize expected utility

o Which would you prefer?
o A) Roll a die, | pay you S1 for every pip on the die.

o B) Flip a (fair) coin: if heads, | pay you $6. If tails, | pay
you nothing.

o What is our utility?
m Utility = money in your pocket?

Why Utility and MEU?

I
o Maybe preferences could be more expressive than
real-valued functions.
o Preference order, > (“at least as preferred”)
o ranking outcomes of actions

o Outcomes are prospects:
w=[p, 0;; 0]
o means w, with probability p, w, otherwise
o w, and w, may be prospects

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Preference under Uncertainty: Axioms

orderability: (w;= w,) v (0, = w,)
transitivity: (0, = w,) A (0, = ©3) = (0, = ©,)
continuity: ;= w,= w; =3 p. w,~ [p, 0; 0]
substitution: ®,;~ w, = [p, w,; 0;] ~ [p, w,; w,]
monotonicity:

w;= W, A p>q—[p, w;; 0,] =[q, w;; 0]
decomposability:

[p, wy; [a, w,; ws]] ~ [a, [p, w;; w,]; [P, w;; 0]

indifference: w,~ w, = (0, = w,) A (0, = ;)

Preference under Uncertainty

o If an ordering of preferences exists, then we can assign real-
valued numbers to each outcome such that more desirable
outcomes always have larger values.

o u([p, w;; m,]) = p u(w,) + (1-p)u(w,)

o Given the following axioms of =:

o orderability, transitivity, continuity, substitution,
monotonicity, decomposability

o =» An ordering exists.

29-Mar-11

EECS 492 Fall 2008

M. Wellman

St. Petersburg Paradox

o Are you rational?
o What’s your utility function?

o | put a dollar in the pot.

o | flip a coin.
o Heads: You can keep the pot, or triple-or-nothing.
o Tails: | keep the pot, game over.

St. Petersburg Paradox: Decision Tree
I

HEADS Agent wins
=0.5
(p=0.5) $3N
Agent decides
E(u)=51.5N
fu)=3 TAILS Agent wins
Pot=$N (p=0.5) nothing
E(u)=$1IN
Agent decides
not to play
Agent wins SN

o What are the expected utilities of each of the agent’s choices?

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Human Utility Functions
s

o How do humans gamble? Does this provide a
better strategy for
value the St. Petersburg
t game?
» outcome
Losses Gains

Reference point
Kahneman & Tversky

Human Utility Functions

lof |

o Non-linear utility of money functions explain much
of human behavior.

o For humans to be rational, there just needs to be
some utility function that obeys the axioms.

o So, are humans rational given “the right” utility
function?

29-Mar-11

EECS 492 Fall 2008

Allais Paradox

L1 ° SIM
S5M
0.
12 0.89 SIM
0.01
S0

$IM
0.1
13
0.89 $0

Allais Paradox 2

SIM

M

L1 ‘\
0.89 $1

10/11_ $5M

/

0.11
iVAR S0
L2
0.89

SIM

M

STM
0.11
L3
0.89 $0
10/11 $5M
0.11
1/11 0
L4 3
0.89 $0

substitution: ; ~ , s [p, 0,; W3] ~ [p, W,; ;]

M. Wellman

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Making Sequences of Decisions

e d .|

A Sequential Decision Process

0 Deterministic maze
world:

o Agent can move to
any adjacent square

o What sequence of
actions maximizes the
utility?

o Utility = sum of
“rewards” in each grid

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Optimal Policy
15 |

0 Deterministic maze
world:

o We can pre-compute
the action at each
state that will
maximize the utility of
the agent.

o Result: Simple
reflexive agent

This is boring because the world
is deterministic. How do we
handle non-determinism?

Policy notation

FEE

0 The policy © says to perform action a when in state
s:

n(s)=a

o The optimal policy is written *

29-Mar-11

EECS 492 Fall 2008

M. Wellman

Simplifying Assumptions
o4 .|
o We’ll make several assumptions...

o Markov Assumption
o Stationary Preferences

Markov Models
s d .|
0 Sequence of states, s, 54,..., 5, €S

o Markov property:
Pr(s; | 59,511) = Pr(s; | s,1)
o Next state conditionally independent of history, given
current state

o Graphical (Bayes net) rep’n:

°_>°_. o _>°_> ...

29-Mar-11

EECS 492 Fall 2008 29-Mar-11

Adding Rewards to Markov Model

o Can associate reward (immediate utility) with
each state

oo o

Overall utility is a function of immediate rewards

Stationarity of Preferences

4

o Utility of state sequence = sum of rewards at each state

o Stationarity:
o Suppose I’'m in some state s.

o Is the utility of a state sequence beginning with s unchanging?

o Suppose there’s a time limit (game ends after move N)

o Utility of reaching goal state changes, depending on how many moves
have been performed so far.

o Not stationary

M. Wellman 10

EECS 492 Fall 2008

M. Wellman

Stationary Preferences
I

0 The property of Stationary Preferences has an
important consequence:

The utility of a state sequence can always be written:

U([S0,51,55,---1) = R(Sg) + YU([S{,85,---])
U([s,S1,55,---1) = R(sg) + YR(sy) + Y?R(s)) + ...

0 What is y in our simple example?

o What does it mean if y is < 1?

Non-Deterministic Example

0.6
0.1 I 0.1

¢ Actions succeed with
probability 0.6.

¢ Probability 0.1 of going in
orthogonal direction.

¢ Probability 0.2 of nothing
happening.

eReward of —.05 for
nonterminal state.

Question: Does an optimal policy exist?

29-Mar-11

11

EECS 492 Fall 2008

M. Wellman

Non-Determinism: Formulation
22 5 |
o Transition probability:

P(in state s, | was in state s_;, performed action a)
=T(s,4, a, 5;)

o Immediate rewards function:
=R(s)

Optimal Policy

I

o Our definition of rationality: maximize expected
utility

0 Optimal policy must maximize the expected utility
for whatever state we might be in...

o1 Note: try to keep “reward” and “utility” straight
o A reward is an immediate payouts
o Utilities are a function of all future payouts.

29-Mar-11

12

EECS 492 Fall 2008

M. Wellman

Expected Utility of a State

0 Suppose (for just a second) that we know the
optimal policy *

0 Suppose that U*(s) is the expected utility for an
agent in state s that follows the optimal policy.

U([sg,51,55,-+-1) = R(sg) + YR(s1) + ¥*R(s,) + ...

U*(s) = R(s) + y(Expected utility of next state)

U*(s) = R(s) + ¥ 2, T(s, n*(s), sHU*(s”)

e d |

Optimal Action

o From previous slide:
U*(s) = R(s) + 7 2 T(s, n*(s), s")U*(s’)

o The optimal action *(s) is the action that
maximizes that expression!

T*(s) = argmax, 2 T(s, a=m*(s), s")U*(s’)

o If finite number of actions, we can just try
all actions and pick the one with the
maximum expected utility.

FEEZ 2

29-Mar-11

13

EECS 492 Fall 2008

M. Wellman

Recursive definition of U*
I
o Combining the equations yields:

U*(s) = R(s) + max, ¥ 2. T(s, a, s")U*(s’)

o Of course, we don’t know U*
= But this suggests a way to compute it...

Value lteration
A
0 Initialize U,y(s) to arbitrary values (zeros, maybe)

O lterate:
Ui(s) = R(s) + max, ¥ X, T(s, a, s)U,_1(s")

o Intuition:

o Immediate rewards are discounted and
“percolated” to adjacent states, then states
adjacent to adjacent states, and so on.

o U, approaches U*.... (maybe?)

29-Mar-11

14

EECS 492 Fall 2008

M. Wellman

29

Value Iteration

¢ Initialize all estimates
to 0.

* Transition
probabilities:

0.6
0.1 | 0.1

» Each non-terminal -.03934 -.0182 .053
state has reward -0.05

U(i) < R() + max X, TU,a,)) U()

Second lteration Utility Values

. Val}les and 2886 5018
policy after
second pass.

.0364 .1561 -.0897

U(i) < R() + max X, TU,a,)) U()

29-Mar-11

15

EECS 492 Fall 2008

M. Wellman

Value Iteration: Convergence
sy .|

o Value iteration converged in this case. Will it
always?

Contraction '

o Bellman equation:

Ui(s) = R(s) + max, ¥ X, T(s, a, s")U;_1(s")
o Error = [|U; - U*[| = max, ||U;(s) - U*(s)||
o Let B be the Bellman operator.

= Error at step i: [|U; - U*[|
= Error at step i+1: [IBU; - U*|]

29-Mar-11

16

EECS 492 Fall 2008

M. Wellman

Contraction
sy .|
o Bellman equation:

Ui(s) = R(s) + max, Y ZS, T(s, a, s")U;_1(s")
Error at step i+1: [|BU; - U*||
= ||BU; - BU*||

Error,,; = max, (R(s) + max, y 2, T(s, a, s)U,(s")
-R(s) - max, y =, T(s, a, s")U*(s’))

= max, ’y(maxazsy T(s, a, sU(s")

- max, I, T(s, a, s)U*(s’))

Error, <y ||l U; - U* ||

Contraction
s

o Key result: Bellman iteration reduces error
by factor y

EI‘I‘OFi+1§Y|| Ui_ U* ||

01 Does this make sense?

vy=0
v =.9999
vy=1.0

29-Mar-11

17

EECS 492 Fall 2008

M. Wellman

Your Turn: Acrophobe at the Canyon

o Wants to gaze upon a grand vista (be close to the edge)
o Afraid of slipping & falling into the canyon!y=0.5

Back up Back up with Pr=1
Stay Stay with Pr =0.9, Forward with Pr =0.1 (“slip”)
Forward Forward with Pr=1
T
from edge | edge edge
Reward 1 10 20 -50 or -100

Policy Loss Bound
I
0 Suppose we iteratively update U, using value
iteration
o We can compute the change in error ||U,,, — U/
o We can also compute the policy T,

0 If we execute m, instead of n*, what will be the
expected utility of the agent in comparison to U*?

o Important Result (see R&N for some more details)
Ui = Uil <e (1-y)/ y > [[U;y; —U¥|| <k
U - U*|<2ey/(1-7)

29-Mar-11

18

EECS 492 Fall 2008

M. Wellman

Policy Loss
4 .|
o Do we need optimal U* to compute *?

o Hint: We pick the action with the greatest expected
utility

o At what point did we know the Acrophobe’s best
policy?
= Did we have to wait until U, converged?

Policy Iteration
N
o A second way to compute optimal policies
0 Begin with an initial policy &,
O Iterate:

o Policy Evaluation: given a policy ©, compute U, = U™

o Policy Improvement: Calculate a new MEU policy T,
using one-step look-ahead based on U,

n*(s) = argmax, > T(s, a, $")U*(s’)

29-Mar-11

19

EECS 492 Fall 2008

M. Wellman

Policy Iteration
R
o Policy Evaluation: given a policy n, compute U, = U™
o Similar to a value iteration step:
Ui(s) = R(s) + max, Y Zs, T(s, a, s")U;_1(s")
...except that we don’t have to consider all actions: we are assuming a
policy! (no max!)

Ui(s) = R(s) + Y X T(s, m(s), s Ui(s")

U(0) = R(0) + B,U,(0) + B,U,(1) + B,U,(2) + ...
U(1) = R(1) + CyU;(0) + C,Ui(1) + C,Ui(2) + ...

Policy Iteration Example

Back up Back up with Pr=1
Stay Stay with Pr=0.9, Forward with Pr=0.1 (“slip”)
Forward Forward with Pr=1
2 steps 1 step from | Right at Oops!
from edge | edge edge
State 0 State 1 State 2 State 3
Reward 1 10 20 -100
Policy F F S ==
Uo=1+0.5*U1l U0=12.818
Ul=10+0.5*U2 Ul=23.636
U2=20+0.5*(0.9%U2 + 0.1*U3) U2=27.273
U3 =-100 U3 =-100

29-Mar-11

20

EECS 492 Fall 2008 29-Mar-11

Value Iteration vs. Policy lteration
VN
o Value Iteration:

o Iterations are cheap, but information flows slowly.

o Policy iteration

o Iterations are expensive (matrix inversion), but
information flows rapidly between states.

o Modified Policy iteration

o Compromise between the two: periodically
recompute policy, but update utilities approximately
(instead of via matrix inversion)

POMDPs

I .

o We've studied Markov decision processes (MDPs)
o World is observable (what does that mean?)

o What if our state is uncertain?

M. Wellman 21

EECS 492 Fall 2008

M. Wellman

Partial Observability (POMDP)
N
0 Agent cannot necessarily determine current state

o Available evidence specified by observability
model, Pr(o; | s))
o We do NOT observe s,

Policies

o Observations do not obey Markov property
o .. Policies:
o function of entire history
o nonstationary
o Complexity of inference rapidly becomes expensive

29-Mar-11

22

EECS 492 Fall 2008

M. Wellman

Belief States
N
o Sequence of observations induces probability
distribution over states
b(s) = Pr(s;=s | 04,0,,...,0,1)
o ldea: Represent policies as function from beliefs to
actions
o MDP methods, results apply

o Not generally practical, as belief state is
continuous and highly dimensional

o Approximation techniques available

Dynamic Decision Networks
I .

o Use forward search techniques over limited
horizon version of POMDP network

29-Mar-11

23

EECS 492 Fall 2008

M. Wellman

Summary
0

o Planning in probabilistic domains + Markov = Markov
Decision Process (MDP)

o Stationary Preferences lead to notion of discounted rewards.

o Two approaches for solving MDPs
o Value Iteration
m Compute good U estimates using non-linear Bellman updates
m Compute policy from final U estimate.
o Policy Iteration
m Alternately update policy and U estimates
= Having a policy estimate allows linear Bellman updates

o POMDPs
Next Time

VN
0 Learning

o Classification/Regression

29-Mar-11

24

