
EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 1

UNINFORMED SEARCH
EECS492

January 13, 2011

General Tree Search

function Tree-search(problem)

returns a solution, or failure

fringe = new Set();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node fringe.get()

if problem.isGoalState(node)

then return node;

fringe.putAll(problem.expand(node))

Which node in the fringe
does get() return?

A problem is specified by:

• initialState
• actions/results 
expand()
• isGoalState

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 2

Measuring Search Performance

 Completeness
 Is the algorithm guaranteed to find a solution if it

exists?

 Optimality
 Does the strategy find the minimum path cost

solution?

 Time Complexity
 How long does it take to find a solution?

 Space Complexity
 How much memory is needed to perform the search?

Our search strategy will affect all of the above!

Breadth-First Search (BFS)

 General tree-search where queue is first-in-first-out
(FIFO)

 get operation returns oldest item on fringe

 corresponds to a level-order traversal of search tree

 All nodes at level d expanded before any at d+1

…

get put

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 3

BFS in Vacuum World

Actions:
L – move Left

S – Suck up the dirt

R – move Right

Starting in state 1, generate search tree.

Vacuum World BFS

1

R

1 5 2

L S

1 5 2

L S R

5 5 6

L S R

1 4 2

L S R

1 5 2 5 5 6 1 4 2 5 5 6 5 5 6 5 8 6 1 5 2 3 4 4 1 4 2

Are we done?
Hurray!

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 4

BFS again

 What does BFS look like from the perspective of
General Tree Search?

Search Performance Criteria: BFS

 Completeness: Guaranteed to find a solution if it
exists?

 YES

 Optimality: Does the strategy find the minimum path
cost solution?

 YES if uniform action cost

 Time Complexity: How long does it take to find a
solution?

 Space Complexity: How much memory is needed to
perform the search?

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 5

BFS Time Complexity

 Assume uniform search space

 Each node has same # successors

 branching factor, b

 d: Depth of shallowest solution

 BFS generates

 complete search trees at depth ≤ d

 Worst case: bd+1 nodes at depth d+1

 Total nodes:

b + b2 + b3 + … + bd + bd+1 = O(bd+1)

BFS Space Complexity

 Same as time complexity: O(bd+1)

 Must store entire fringe: all nodes at deepest level

 In typical computer configurations, will run out of
space before running out of time

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 6

BFS and sub-optimal solutions

S

D

F

P

AA

K

FW

C
T

BG

M

A

Y

Uniform-Cost Search (UCS)

 General tree-search where queue is priority-first

 get operation returns least-cost item on fringe

 All nodes at cost less than c expanded before any
at cost c

 Same as BFS if all actions have same cost, different
otherwise

…

get put

(maintained in path-cost order)

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 7

UCS Properties

 Complete?
 Yes

 Time and space complexity
 Uniform cost:
 Same as BFS: O(bd+1)

 In general, with minimal path cost C* and minimal action
cost e:
 O(bC*/e + 1)

 Optimal as long as cost monotonic along path
 Guaranteed by each edge cost >= 0

Depth-First Search (DFS)

 General tree-search where queue is last-in-first-out
(LIFO, aka stack)
 get operation returns newest item on fringe

 often implemented recursively using function-call stack

 Always expand deepest node on fringe

…

get

put

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 8

NOTE REGARDING NEXT SLIDE

 The nodes should really be expanded on the right
side of the tree, so that the most recently added
node is expanded.

Vacuum World DFS

1

R

1 5 2

L S

1 5 2

L S R

1 5 2

Uh oh!

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 9

Recursive implementation

 function search_recursive(state)

 if (is_goal(state))

 return state;

 for (child : children(state))

 v = search_recursive(child)

 if (v != null)
 return v;

 return null;

Performance of Depth-First

 Completeness

 Optimality

 Time Complexity

 Space Complexity

Only for finite depth trees, and so in general: No

No

O(b m)

O(bm); where m is the maximum depth of tree

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 10

Depth-Limited Search

 Problem: unbounded trees in DFS

 Solution:

 Predetermine a depth limit L

 Run DFS, cut off search at depth L

 Complete iff exists solution within L steps

 Optimal?

 Time complexity: O(bL)

 Space complexity: O(bL)

 How do we choose L?

Iterative Deepening DFS

function Iterative-deepening-search(problem)

returns a solution, or failure

loop for depth from 0 to infinity

if Depth-limited-search(problem,depth) succeeds

then return its result

end loop

return failure

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 11

IDS Properties

 Complete?

 Optimal?

 Time Complexity?

 Space Complexity?

IDS Complexity

 Time is same as running DLS for depth = 1,…,d

 Space is same as DLS for depth d: O(bd)



O(bl)
l1

d

 O(b) +O(b2) + +O(bd) O(bd)

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 12

Analysis Summary

Criterion Breadth-

First

Uniform-

Cost

Depth-

First

Depth-

Limited

Iterative

Deepening

Complete? Yes Yes No No Yes

Optimal? Yes Yes No No Yes

Time

complexity

O(bd+1) O(bC*/e+1) O(bm) O(bL) O(bd)

Space

compexity

O(bd+1) O(bC*/e+1) O(bm) O(bL) O(bd)

Linear in depth!Exponential in depth!

Your turn!

 Show that:

 (by finding a polynomial of order b^n with constant coefficients that is
greater than the sum)

 7 Queens:
 Goal: Place 7 queens on 7x7 chess board so that no two attack each

other

 Formulate the problem carefully
 What state space?
 What actions do you consider at each step?

 Which search strategy to use?
 Find a solution using your strategy.

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 13

7 queens, DFS

Stuck!

Stuck!

The importance of problem formulation

 Problem formulation has huge impact on
complexity

 State space

 Actions

 Consider 7-queens problem:

 Naïve state space: branching factor of roughly ~49

 One queen per column: branching factor of 7.

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 14

Path Planning Example

 Consider an agent trying to find the best route from
one place to another.
 Actions = {N, S, E, W}

 DFS is out. (Why?)

 The shortest path is 50 moves.
 Complexity of BFS/IDS?

 How many distinct states are there?
 252 << 450 (by a factor of 1027!)

 What are we doing wrong?
 Repeated states!

Goal

Start

Avoiding repeated states

 Idea: don’t re-expand nodes that we’ve already
expanded.

 Closed list: set of all states previously visited

Memory usage?

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 15

General Graph Search

function Tree-search(problem)

returns a solution, or failure

closed = new Set();

closed.add(problem.initialState);

fringe = new Set();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node fringe.get()

if problem.isGoalState(node)

then return node;

for each child in problem.expand(node)

if !set.contains(child)

closed.add(child)

fringe.put(child)

General Graph Search: Analysis

 Time complexity?
 O(|V| + |E|)

 Memory complexity?
 O(|V|)

 Optimality?
 BFS/IDS?

 DFS?

 What about DFS’s infinite loop problem?
 Fixed for finite worlds!

 Can we guarantee optimality, regardless of the policy?
 For finite worlds, if we replace old bad paths with new good paths

rather than discarding the new good paths.

 Some bookkeeping…

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 16

Graph Search: Summary

 Graph Search

Maintains list of states already visited

 Terminates searches that revisit the same states.

 When do we want to use graph search?

When repeated states are likely

We can afford the memory

Next Time: Informed Search

 Employ additional information about node states
in deciding which to expand

 Questions:

What criteria?

 How to exploit?

 Properties?

