
EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 1

UNINFORMED SEARCH
EECS492

January 13, 2011

General Tree Search

function Tree-search(problem)

returns a solution, or failure

fringe = new Set();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node fringe.get()

if problem.isGoalState(node)

then return node;

fringe.putAll(problem.expand(node))

Which node in the fringe
does get() return?

A problem is specified by:

• initialState
• actions/results
expand()
• isGoalState

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 2

Measuring Search Performance

 Completeness
 Is the algorithm guaranteed to find a solution if it

exists?

 Optimality
 Does the strategy find the minimum path cost

solution?

 Time Complexity
 How long does it take to find a solution?

 Space Complexity
 How much memory is needed to perform the search?

Our search strategy will affect all of the above!

Breadth-First Search (BFS)

 General tree-search where queue is first-in-first-out
(FIFO)

 get operation returns oldest item on fringe

 corresponds to a level-order traversal of search tree

 All nodes at level d expanded before any at d+1

…

get put

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 3

BFS in Vacuum World

Actions:
L – move Left

S – Suck up the dirt

R – move Right

Starting in state 1, generate search tree.

Vacuum World BFS

1

R

1 5 2

L S

1 5 2

L S R

5 5 6

L S R

1 4 2

L S R

1 5 2 5 5 6 1 4 2 5 5 6 5 5 6 5 8 6 1 5 2 3 4 4 1 4 2

Are we done?
Hurray!

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 4

BFS again

 What does BFS look like from the perspective of
General Tree Search?

Search Performance Criteria: BFS

 Completeness: Guaranteed to find a solution if it
exists?

 YES

 Optimality: Does the strategy find the minimum path
cost solution?

 YES if uniform action cost

 Time Complexity: How long does it take to find a
solution?

 Space Complexity: How much memory is needed to
perform the search?

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 5

BFS Time Complexity

 Assume uniform search space

 Each node has same # successors

 branching factor, b

 d: Depth of shallowest solution

 BFS generates

 complete search trees at depth ≤ d

 Worst case: bd+1 nodes at depth d+1

 Total nodes:

b + b2 + b3 + … + bd + bd+1 = O(bd+1)

BFS Space Complexity

 Same as time complexity: O(bd+1)

 Must store entire fringe: all nodes at deepest level

 In typical computer configurations, will run out of
space before running out of time

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 6

BFS and sub-optimal solutions

S

D

F

P

AA

K

FW

C
T

BG

M

A

Y

Uniform-Cost Search (UCS)

 General tree-search where queue is priority-first

 get operation returns least-cost item on fringe

 All nodes at cost less than c expanded before any
at cost c

 Same as BFS if all actions have same cost, different
otherwise

…

get put

(maintained in path-cost order)

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 7

UCS Properties

 Complete?
 Yes

 Time and space complexity
 Uniform cost:
 Same as BFS: O(bd+1)

 In general, with minimal path cost C* and minimal action
cost e:
 O(bC*/e + 1)

 Optimal as long as cost monotonic along path
 Guaranteed by each edge cost >= 0

Depth-First Search (DFS)

 General tree-search where queue is last-in-first-out
(LIFO, aka stack)
 get operation returns newest item on fringe

 often implemented recursively using function-call stack

 Always expand deepest node on fringe

…

get

put

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 8

NOTE REGARDING NEXT SLIDE

 The nodes should really be expanded on the right
side of the tree, so that the most recently added
node is expanded.

Vacuum World DFS

1

R

1 5 2

L S

1 5 2

L S R

1 5 2

Uh oh!

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 9

Recursive implementation

 function search_recursive(state)

 if (is_goal(state))

 return state;

 for (child : children(state))

 v = search_recursive(child)

 if (v != null)
 return v;

 return null;

Performance of Depth-First

 Completeness

 Optimality

 Time Complexity

 Space Complexity

Only for finite depth trees, and so in general: No

No

O(b m)

O(bm); where m is the maximum depth of tree

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 10

Depth-Limited Search

 Problem: unbounded trees in DFS

 Solution:

 Predetermine a depth limit L

 Run DFS, cut off search at depth L

 Complete iff exists solution within L steps

 Optimal?

 Time complexity: O(bL)

 Space complexity: O(bL)

 How do we choose L?

Iterative Deepening DFS

function Iterative-deepening-search(problem)

returns a solution, or failure

loop for depth from 0 to infinity

if Depth-limited-search(problem,depth) succeeds

then return its result

end loop

return failure

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 11

IDS Properties

 Complete?

 Optimal?

 Time Complexity?

 Space Complexity?

IDS Complexity

 Time is same as running DLS for depth = 1,…,d

 Space is same as DLS for depth d: O(bd)

O(bl)
l1

d

 O(b) +O(b2) + +O(bd) O(bd)

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 12

Analysis Summary

Criterion Breadth-

First

Uniform-

Cost

Depth-

First

Depth-

Limited

Iterative

Deepening

Complete? Yes Yes No No Yes

Optimal? Yes Yes No No Yes

Time

complexity

O(bd+1) O(bC*/e+1) O(bm) O(bL) O(bd)

Space

compexity

O(bd+1) O(bC*/e+1) O(bm) O(bL) O(bd)

Linear in depth!Exponential in depth!

Your turn!

 Show that:

 (by finding a polynomial of order b^n with constant coefficients that is
greater than the sum)

 7 Queens:
 Goal: Place 7 queens on 7x7 chess board so that no two attack each

other

 Formulate the problem carefully
 What state space?
 What actions do you consider at each step?

 Which search strategy to use?
 Find a solution using your strategy.

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 13

7 queens, DFS

Stuck!

Stuck!

The importance of problem formulation

 Problem formulation has huge impact on
complexity

 State space

 Actions

 Consider 7-queens problem:

 Naïve state space: branching factor of roughly ~49

 One queen per column: branching factor of 7.

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 14

Path Planning Example

 Consider an agent trying to find the best route from
one place to another.
 Actions = {N, S, E, W}

 DFS is out. (Why?)

 The shortest path is 50 moves.
 Complexity of BFS/IDS?

 How many distinct states are there?
 252 << 450 (by a factor of 1027!)

 What are we doing wrong?
 Repeated states!

Goal

Start

Avoiding repeated states

 Idea: don’t re-expand nodes that we’ve already
expanded.

 Closed list: set of all states previously visited

Memory usage?

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 15

General Graph Search

function Tree-search(problem)

returns a solution, or failure

closed = new Set();

closed.add(problem.initialState);

fringe = new Set();

fringe.put(problem.initialState)

loop do

if fringe.isEmpty() then return failure

node fringe.get()

if problem.isGoalState(node)

then return node;

for each child in problem.expand(node)

if !set.contains(child)

closed.add(child)

fringe.put(child)

General Graph Search: Analysis

 Time complexity?
 O(|V| + |E|)

 Memory complexity?
 O(|V|)

 Optimality?
 BFS/IDS?

 DFS?

 What about DFS’s infinite loop problem?
 Fixed for finite worlds!

 Can we guarantee optimality, regardless of the policy?
 For finite worlds, if we replace old bad paths with new good paths

rather than discarding the new good paths.

 Some bookkeeping…

EECS 492 Fall 2008 Sep-10-08

M. Wellman & E. Olson 16

Graph Search: Summary

 Graph Search

Maintains list of states already visited

 Terminates searches that revisit the same states.

 When do we want to use graph search?

When repeated states are likely

We can afford the memory

Next Time: Informed Search

 Employ additional information about node states
in deciding which to expand

 Questions:

What criteria?

 How to exploit?

 Properties?

