

Course Overview: Where We Are

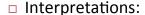
- □ Logic
 - □ Languages: PL, FOL
 - □ Inference (model checking, chaining, resolution)
- Logical Planning
 - Deterministic
 - Non-Deterministic: dealing with unknown propositions
- Probability
 - Language
 - Inference

Today

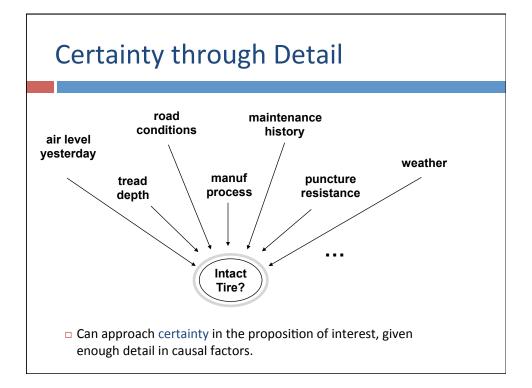
- □ How does probability make for better agents?
- Decision Theory
 - What does rationality mean for a probabilistic agent?
 - Maximizing expected utility
- □ The language of probabilities
 - Joint, Marginal, Conditional Distributions
 - Bayes' rule
 - Simple methods of probabilistic inference

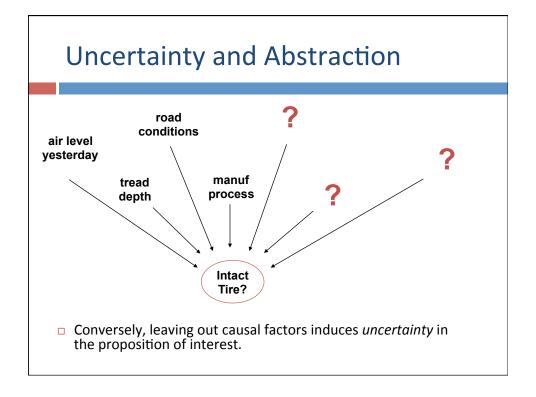
What do probabilities mean?

- And where do they come from?
 - Pr(Head) = ?

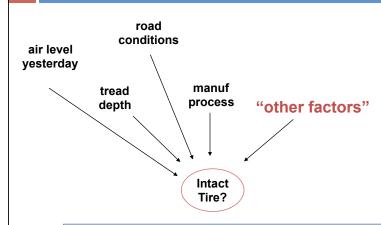


- A) The coin has an intrinsic property of coming up heads at a particular rate
- B) Given a large number of trials, the fraction of heads approaches Pr(Head)
- C) I am uncertain about Pr(Head), but have some prior belief which can be refined through observation.
- D) The coin has qualities of being both heads and tails, and the "headness" of it is Pr(Head).





Uncertainty as Summarization



Degrees of belief are summary measures of the uncertainty induced by leaving out model details.

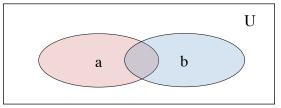
Probability Theory

Probability function

$$Pr: S \rightarrow [0,1]$$

- □ S is a sentence in a logic (typically propositional)
- Random variables (boolean, discrete, continuous)
 - Analogous to a propositional symbol
- Axioms
 - 1. $0 \le Pr(a) \le 1$
 - 2. Pr(true) = 1 and Pr(false) = 0
 - 3. $Pr(a \lor b) = Pr(a) + Pr(b) Pr(a \land b)$

Your turn!



Given:

$$Pr(a \lor b) = Pr(a) + Pr(b) - Pr(a \land b)$$

Show that:

 $Pr(\neg a) = 1 - Pr(a)$ Hint: Consider $Pr(a \lor \neg a)$

Justifying the Axioms

- Axioms of probability restrict the set of probabilistic beliefs an agent can hold
- Why are these beliefs irrational?
 - Arr Pr(a) = 0.4, Pr(b) = 0.3, Pr(a v b) = 0.8
- □ de Finetti's argument
 - Agent should be willing to bet based on beliefs
 - If Pr(a) = 0.4, then agent should be *indifferent* to [\$6 if a; \$4 if $\neg a$]
 - Any agent violating axioms can be turned into a money machine (!) via a Dutch Book

Dutch Book Example

Agent1			Agent2 bets on		Outcome for Agent1		
Event	Belief	Odds		a∧b	a∧¬b	¬a∧b	¬а∧¬b
a	0.4	4:6	a	-6	-6	4	4
b	0.3	3:7	b	-7	3	-7	3
a V b	0.8	2:8	¬(a V b)	2	2	2	-8
				-11	-1	-1	-1

Joint Probability

 Probability of multiple propositions, considered simultaneously.

 $P(H1 ^ H1) = 0.25$ (joint probability)

 Specifying joint probability over all atomic events = full joint distribution = complete probabilistic description of the world

■ In discrete case, could use a big table

How many entries in the table?

■ Assume N binary random variables

 Two crooked coins (p=0.7)

 H1
 H2
 P(H1 ^ H2)

 False
 False
 0.09

 False
 True
 0.21

 True
 False
 0.21

 True
 True
 0.49

Marginal Probability

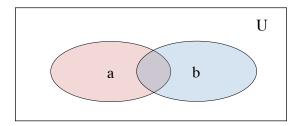
 Start with a joint probability, ignore some random variables

Two crooked coins (p=0.7)					
H1	H2	P(H1 ^ H2)			
False	False	0.09			
False	True	0.21			
True	False	0.21			
True	True	0.49			

- Crooked coin
 - Given full joint distribution
 - Suppose we can't see the second flip
 - Can we still characterize P(H1)?

□ P(H1) = P(H1, H2) + P(H1, ~H2) = 0.7 (whew!)

Conditional Probability



$$\Pr(a \mid b) = \frac{\Pr(a \land b)}{\Pr(b)}$$

- □ Undefined if Pr(b) = 0
- □ Means probability of *a* given all we know is *b*
- □ Often: P(a | KB)

Your turn: Marginals

#Legs	Species	P(Legs=#Legs, Species =Species)
2	Dog	.001
	Cat	.001
	Bird	.2
3	Dog	.057
	Cat	.04
	Bird	.001
4	Dog	.4
	Cat	.3
	Bird	0

- P(#legs=2 v #legs=3 v #legs=4)
- P(Dog v Cat v Bird)
- P(Bird)
- 4. P(Bird, #legs = 2)
 - P(Bird | #legs = 2)
 - P(#legs = 3 | Cat)

Evidence Evaluation Example

- □ Disease testing (hypothetical):
 - Prior probability (prevalence)
 - Pr(disease) = .0005
 - Conditionals (test accuracy)
 - Pr(pos test | disease) = 1
 - Pr(neg test | ¬ disease) = .995
 - Posterior
 - Pr(disease | pos test) = ?

Product Rule

- \square P(A | B) P(B) = P(A, B)
- Of course P(A, B) = P(B, A), so:
 P(A | B) P(B) = P(B | A) P(A) = P(A, B)
- □ If we rearrange a bit, we arrive at one of the most important probabilistic theorems:

Bayes's Theorem

$$\Pr(h \mid e) = \frac{\Pr(h \land e)}{\Pr(e)}$$

$$= \frac{\Pr(e \mid h) \Pr(h)}{\Pr(e)}$$

Evidence Evaluation Example

- □ Disease testing (hypothetical):
 - Prior probability (prevalence)
 - Pr(disease) = .0005
 - Conditionals (test accuracy)
 - Pr(pos test | disease) = 1
 - Pr(neg test | ¬ disease) = .995
 - Posterior
 - Pr(disease | pos test) =
 Pr(pos test | disease) Pr(disease) / Pr(pos test) =
 1 * .0005 / ??

Evidence Evaluation Example

```
Pr(pos test) = Pr(pos-test ^ disease) +

Pr(pos-test ^ ~disease)

= Pr(pos-test | disease)Pr(disease) +

Pr(pos-test | ~disease)Pr(~disease)

= (1 * .0005) +

((1-Pr(neg | ~dis))*(1-Pr(disease))

= .0005 + (.005 * .9995)

= .0054975
```

Evidence Evaluation Example

- □ Disease testing (hypothetical):
 - Prior probability (prevalence)
 - Pr(disease) = .0005
 - Conditionals (test accuracy)
 - Pr(pos test | disease) = 1
 - Pr(neg test | ¬ disease) = .995
 - Posterior
 - Pr(disease | pos test) =
 Pr(pos test | disease) Pr(disease) / Pr(pos test) =
 1 * .0005 / .0054975 =
 0.09095

Causal versus Diagnostic Information

- □ P(funny engine noise | loose hose)
 - Causal or Diagnostic?
- □ P(loose hose | funny engine noise)
 - Causal or Diagnostic?
- Bayes' rule allows us to go back and forth
 - Which fact is more useful?
 - News report: "Police have identified the notorious hose loosener, who has doubled the prevalence of loose hoses. This hose loosener is still on the loose!"
 - What is P(funny engine noise | loose hose) now?
 - What is P(loose hose | funny engine noise) now?

Independence

- □ a and b are *independent* iff:
 - Pr(a|b) = Pr(a)
- Independence implies
 - \square Pr(a \wedge b) = Pr(a)Pr(b)
- □ a and b are *conditionally* independent given c iff:
 - \square Pr(a|b c) = Pr(a|c)
 - $\blacksquare \text{ Equiv: } P(a,b \mid c) = P(a \mid c) P(b \mid c)$

Conditional Independence

- Consider:
 - □ HIV → Infection → Fever
- □ If we don't know "infection", then HIV and Fever are dependent.
- □ But if we *do* know "infection", HIV and Fever become independent
 - The value of "Infection" conveys all of the relevant information of HIV to fever.

Combining Conditions

- How to calculate
 - Pr(Intact | Flat, Glass)
- Given
 - Pr (Flat | Intact), Pr(Flat | ~Intact)
 - Pr (Intact | Glass), Pr(~Intact | Glass)
 - Flat (looks flat) is conditionally independent of Glass (glass in road) given Intact
- Hint: use the conditional independence, normalization

Continuous-valued Probabilities

- So far, we've only described discrete-valued probabilities
- Many real-world quantities are continuous
 - Tire pressure
 - GPS coordinates of car
- Very similar to discrete-valued probabilities...

Continuous-valued Probabilities

Discrete	Continuous
Probability functions P(S) = [0, 1]	Probability <i>Density</i> Functions P(x) >= 0 Prob(x) = 0
$\sum P(S) = 1$	$\int P(x) dx = 1$

- Despite differences, notation for discrete probability distribution and continuous probability density function is (usually) the same!
- · Common continuous distributions

Uniform: U(0,5)
 Gaussian: N(μ,σ²)

Next Time

- □ Bayesian Networks
 - Full joint distributions can be very big
 - The world has structure: not every proposition is correlated with very other proposition!
 - Exploit conditional independence to reduce problem size
 - Faster inference