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Course Overview: Where We Are
I

0 Logic
o Languages: PL, FOL
o Inference (model checking, chaining, resolution)

o Logical Planning
o Deterministic
o Non-Deterministic: dealing with unknown propositions

0 Probability
o Language
o Inference
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Today

T
o How does probability make for better agents?

o Decision Theory
o What does rationality mean for a probabilistic agent?
o Maximizing expected utility

o The language of probabilities
o Joint, Marginal, Conditional Distributions
o Bayes’ rule
o Simple methods of probabilistic inference

What do probabilities mean?

o And where do they come from?
o Pr(Head) =?

0 Interpretations:

o A) The coin has an intrinsic property of coming up heads at
a particular rate

o B) Given a large number of trials, the fraction of heads
approaches Pr(Head)

o C) I am uncertain about Pr(Head), but have some prior
belief which can be refined through observation.

o D) The coin has qualities of being both heads and tails, and
the “headness” of it is Pr(Head).
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Certainty through Detail
L

road maintenance

conditions i
air level history

yesterday
weather
tread manuf puncture
depth process resistance

o Can approach certainty in the proposition of interest, given
enough detail in causal factors.

Uncertainty and Abstraction
L

road ?

i conditions
air level

yesterday P
tread manuf
depth process /

o Conversely, leaving out causal factors induces uncertainty in
the proposition of interest.
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conditions
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air level

yesterday
tread manuf
depth p’°‘\’ess “other factors”

Degrees of belief are summary measures of the
uncertainty induced by leaving out model details.

Probability Theory

g |
o Probability function
Pr: S —[0,1]
o  Sisasentence in a logic (typically propositional)
o Random variables (boolean, discrete, continuous)
o  Analogous to a propositional symbol
o Axioms
1. 0<Pr(a)<1
2. Pr(true) = 1 and Pr(false) =0
3 Pr(a v b) = Pr(a) + Pr(b) — Pr(a A b)
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Your turn!

9~ >
Given:

Pr(a v b) = Pr(a) + Pr(b) - Pr(a A b)

Show that:

Pr(—la) =1- Pr(a) Hint: Consider Pr(a v —a)

Justifying the Axioms

o Axioms of probability restrict the set of probabilistic
beliefs an agent can hold

o Why are these beliefs irrational?
o Pr(a) =0.4, Pr(b) =0.3, Pr(a v b) =0.8

o de Finetti’s argument
- Agent should be willing to bet based on beliefs

- If Pr(a) = 0.4, then agent should be indifferent to
[S6ifa; $S4if -a]

- Any agent violating axioms can be turned into a money
machine (!) via a Dutch Book
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Dutch Book Example
g |

Agentl Agent2 Outcome for Agentl
bets on
Event | Belief | Odds - anb an-b —-aanb | —aan-b
a 04 |4:6 a -6 -6 4 4
b 03 (3:7 b -7 3 -7 3
-11 -1 -1 -1

Joint Probability

g |
o Probability of multiple propositions, considered
simultaneously.
o P(H1 2 ~H2)=0.25 (joint probability)

0 Specifying joint probability over all atomic events =
full joint distribution = complete probabilistic

description of the world
o In discrete case, could use a big table --_
o How many entries in the table? False False 0.0
m Assume N binary random variables False True 0.21
True False 0.21
True True 0.49
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Marginal Probability

0 Start with a joint probability,
ignore some random variables WL W2 PHLMHZ)
False False 0.09
False True 0.21
0 Crooked COin True False 0.21

i joi istributi True T 0.49
o Given full joint distribution S

o Suppose we can’t see the second flip
m Can we still characterize P(H1)?

o P(H1) = P(H1, H2) + P(H1, “H2)  dammm Mmarginalization
=0.7 (whew!)

Conditional Probability
-
U
o Undefined if Pr(b) =0
Pr(a | b)= M o Means probability of a given
Pr(b) all we know is b
o Often: P(a | KB)
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Your turn: Marginals
L
1. P(#legs=2 v #legs=3 v #legs=4)
#legs P(Legs=tiLegs, 2. P(Dogv Cat v Bird)
Species =Species)
3. P(Bird)
2 Dog .001 .
4. P(Bird, #legs = 2)
Cat .001 .
Bird 5 s, P(Bird | #legs =2)
Ir 0
6. P(#legs=3 | Cat)
3 Dog .057
Cat .04
Bird .001
4 Dog
Cat .
Bird 0

Evidence Evaluation Example
g |

0 Disease testing (hypothetical):

o Prior probability (prevalence)

m Pr(disease) = .0005
o Conditionals (test accuracy)

® Pr(pos test | disease) =1

m Pr(neg test | - disease) = .995
o Posterior

m Pr(disease | pos test) =7?
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Product Rule

N
o P(A | B) P(B) = P(A, B)

o Of course P(A, B) = P(B, A), so:
oP(A | B)P(B)=P(B | A) P(A) =P(A, B)

o If we rearrange a bit, we arrive at one of the most
important probabilistic theorems:

Bayes’s Theorem
g |

Pr(h | e)= —Pré:t(;\)e)
_ Pr(e| h)Pr(h)

Pr(e)
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Evidence Evaluation Example

0 Disease testing (hypothetical):
o Prior probability (prevalence)
m Pr(disease) = .0005
o Conditionals (test accuracy)
m Pr(pos test | disease) =1
m Pr(neg test | - disease) = .995
o Posterior
m Pr(disease | pos test) =
Pr(pos test | disease) Pr(disease) / Pr(pos test) =
1*.0005/ ??

Evidence Evaluation Example
g |
Pr(pos test) = Pr(pos-test ” disease) +
Pr(pos-test A ~disease)
= Pr(pos-test | disease)Pr(disease) +
Pr(pos-test|~disease)Pr(~disease)
= (1 *.0005) +
((1-Pr(neg|~dis))*(1-Pr(disease))
.0005 + (.005 * .9995)
.0054975
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Evidence Evaluation Example
g |

o Disease testing (hypothetical):
o Prior probability (prevalence)
m Pr(disease) = .0005
o Conditionals (test accuracy)
m Pr(pos test | disease) =1
m Pr(neg test | - disease) =.995
o Posterior
m Pr(disease | pos test) =
Pr(pos test | disease) Pr(disease) / Pr(pos test) =
1 *.0005 /.0054975 =
0.09095

Causal versus Diagnostic Information

o P(funny engine noise | loose hose)
o Causal or Diagnostic?

o P(loose hose | funny engine noise)
o Causal or Diagnostic?

o Bayes’ rule allows us to go back and forth
o Which fact is more useful?
o News report: “Police have identified the notorious hose

loosener, who has doubled the prevalence of loose hoses.
This hose loosener is still on the loose!”

® What is P(funny engine noise | loose hose) now?
m What is P(loose hose | funny engine noise) now?
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Independence

0 a and b are independent iff:
o Pr(alb) = Pr(a)

o Independence implies
o Pr(a A b) = Pr(a)Pr(b)

o a and b are conditionally independent given c iff:
o Pr(albc)="Pr(alc)
o Equiv: P(a,b | ¢) =P(alc) P(b]c)

Conditional Independence

o Consider:
o HIV = Infection = Fever

o If we don’t know “infection”, then HIV and Fever
are dependent.

o But if we do know “infection”, HIV and Fever
become independent

o The value of “Infection” conveys all of the relevant
information of HIV to fever.
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Combining Conditions

I
o How to calculate

o Pr( Intact | Flat, Glass )
o Given

o Pr ( Flat | Intact ), Pr( Flat | ~Intact)

o Pr ( Intact | Glass ), Pr(~Intact | Glass )

o Flat (looks flat) is conditionally independent of Glass
(glass in road) given Intact

0 Hint: use the conditional independence,
normalization

Continuous-valued Probabilities

o So far, we’ve only described discrete-valued
probabilities

o Many real-world quantities are continuous

o Tire pressure
o GPS coordinates of car

o Very similar to discrete-valued probabilities...
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Continuous-valued Probabilities

Probability functions Probability Density Functions
P(S) = [0, 1] P(x) >= 0

Prob(x)=0
2 P(s)=1 [ P@x)dx=1

* Despite differences, notation for discrete probability distribution
and continuous probability density function is (usually) the same!

¢ Common continuous distributions
e Uniform: U(0,5)
 Gaussian: N(u,02)

Next Time

o Bayesian Networks
o Full joint distributions can be very big

o The world has structure: not every proposition is
correlated with very other proposition!

o Exploit conditional independence to reduce problem
size

o Faster inference
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