Camera Feature Detection

- Motivation: understanding images is really hard!
 - Lots of data
 - Human brain does bottom-up and top-down processing

- Idea: a lot of the information is concentrated in a few areas
 - Just look at those areas!
 - How do we find those areas?
Corner Detectors

- Perhaps corners can help us
 - Relatively easy to find
 - Trackable
 - Recognizable (?)

- Wait… what is a corner?
 - Not just a corner of a physical object
 - Any pixel pattern that is well localized in all directions
 - Not a uniform area
 - Not a line or edge
 - We could hard-code a bunch of patterns, but that's not appealing (especially for large image patches!)

Image Gradients

- Idea: let’s look at gradients of a patch of pixels
 - Gradient at pixel a is (b-a, c-a)

- Compute gradients for 2x2 area
 - We need 3x3 input…
Image Gradients

Is this a good corner? What are the gradients?

Is this a good corner? What are the gradients?

Is this a good corner? What are the gradients?

Is this a good corner? What are the gradients?

Is this a good corner? What are the gradients?

Is this a good corner? What are the gradients?
Good and Bad Corners

- **Good Corners**
- **Bad Corners**

How can we identify good corners from their gradients?

Gradient Plots

- **Good Corners**

The ellipses are the sample covariance of the points, i.e., the sum of the outer products.

\[S = \sum_i g_i g_i^T \]
Gradient Plots

- Bad Corners
 - The magnitude of the ellipse’s axes are the _________ of the matrix S.
 - Basic method: Compute matrix S at each pixel, compute the ________, report corners whose minimum magnitude is greater than a threshold.

Harris Corner Detector

- Good Corners
- Bad Corners

- Idea: Ellipses for good corners have two strong axes.
Harris Corner Problems

- Computing eigenvalues is slow
- Harris Corners are not isotropic
- Discrete gradient suffers from nasty non-linear quantization effects (bad gradient estimates!)
- Not scale invariant

Harris Corners: Faster Eigenvalues

- Computing eigenvalues is slow
 - Okay, so let's use easy-to-compute quantities.
 \[
 \text{trace}(S) = \lambda_1 + \lambda_2 \\
 \text{det}(S) = \lambda_1 \lambda_2
 \]
 - Common heuristic:
 \[
 M = \text{det}(S) - \kappa \text{trace}(S)^2
 \]
 - (mostly use the area of the ellipse, with a penalty for ellipses with eccentricity.)
Harris Corner: Isotropicity, Poor gradients

- Two problems:
 - Not isotropic
 - Discrete gradient doesn’t always compute quite the best answer

- One solution:
 - Perform a Gaussian blur on the image
 - Greatly improves continuousness of gradients in all directions
 - Reduces effects of discrete gradient computations, which are the source of anisotropic behavior.
 - Each gradient becomes the weighted sum of those gradients around it

Harris Corners: Scale Invariance

- Corners of high-resolution images are often blurry or noisy at fine levels of detail

- Idea: run Harris corner detector on down-sampled versions of the image
 - Extract corners, blur, decimate, repeat.
Image Pyramids

- Look for features on multiple scales
 - Just repeat image processing algorithm on successively lower-resolution images
 - Must produce lower-resolution images

- Avoiding aliasing requires low-pass filters
 - Ideal low-pass filter?
 - Don’t create new features when filtering

Harris Corners: Example

- Find Harris corners at multiple scales, threshold according to strength

Low threshold

High threshold
Harris Corner: Summary

- Principled method of detecting corners
- Look for image patches whose gradients span the whole space
- With simple modifications, scale invariant, isotropic, fast.

Corners

- Now that we have corners, what can we do with them?
 - Landmarks for SLAM
 - Use them to track moving objects
 - Find registration marks on calibration targets
Improving tracking using appearance

- Suppose we identify corners from two image frames.
 - Which corners in image A correspond to those in image B?

- We could (should) use RANSAC the way we did with other point features

- Could we use the appearance of the corner itself to help matching?

Image patch matching

- Extract regions from images, compute sum of absolute/squared (SAD/SSE) differences

 - These will have a fairly small error

 - These will have a large error: may not match
Robust image patch matching

- Goal: Detect distinctive features, maximizing repeatability
 - Scale invariance
 - Robust to changes in distance
 - Rotation invariance
 - Robust to rotations of camera
 - Affine invariance
 - Robust to tilting of camera
 - Brightness invariance
 - Robust to minor changes in illumination
 - Produce small descriptors that can be compared using simple mathematical operations (SSE)

SIFT: Scale-Invariant Feature Transform

- Developed by David Lowe
 - See paper on course website
 - Very useful tool, reflexively used by vision researchers in many contexts. (Even when SIFT isn’t really a good choice.)
 - Watch out: patented, commercial use restricted.
SIFT

Algorithm outline:
- Detect interest points (aka corners)
- For each interest point
 - Determine dominant orientation
 - Build histograms of gradient directions
 - Output feature descriptor

SIFT: Interest Points

- SIFT doesn’t use Harris corners

- Instead: Difference of Gaussians
 - Compute image pyramid, subtract images subjected to different Gaussian filter sizes
 - Local maxima in DoG indicate corners and edges
 - Filter local maxima using Harris-Corner like test
Sub-Octave Image Pyramids

Difference of Gaussians
SIFT: Canonical Orientation

- We now have an interest point and want to compute a descriptor

- Begin by computing canonical orientation
 - This is where rotational invariance comes from

- Compute histogram (10 degree bins) of gradient orientations
 - Peak = canonical orientation

SIFT: Keypoint Descriptor

- "Official" SIFT uses 16x16 pixel patches, 4x4 bins, 8 histogram buckets
 - How many degrees of freedom in SIFT descriptor?
SIFT: Matching Descriptors

- Each SIFT feature:
 - (x, y, scale)
 - descriptor[128]

- Two descriptors can be compared using Euclidean distance...
 - Small distances = similar descriptors
 - What if same/similar feature appears more than once? → nearest neighbor may not be good enough

- Common approach:
 - Suppose best match for A_i is B_j (with d_{ij}).
 - Suppose next best match for A_i is B_k (with d_{ik}).
 - Require $d_{ij} < a d_{ik}$. (a typically 0.8).

SURF
SIFT: Object Recognition

SIFT: Conclusions

- SIFT very popular, often effective
- Quite slow, though some fast implementations exist (GPU versions from UNC-Chapel Hill)