NON-LINEAR SLAM

\[A = L L^T \]
Non-Linear SLAM

- Robot Trajectory: a pose graph

\[z_0 = f_0(x_0, x_1) \]
\[z_1 = f_1(x_1, x_2) \]
\[z_2 = f_2(x_2, x_3) \]
\[z_3 = f_3(x_3, x_4) \]
\[z_4 = f_4(x_0, x_5) \]
\[z_5 = f_5(x_2, x_5) \]
\[z_6 = f_6(x_3, x_5) \]
Non-Linear SLAM: Review

- Stacking observations
- Observations want $Jd = r$
 - Over-determined. Each observation associated with covariance
- Minimize the cost function:
 \[
 \chi^2 = (z(x) - z)^T \Sigma^{-1}_z (z(x) - z)
 \approx (J \Delta x + \hat{z} - z)^T \Sigma^{-1}_z (J \Delta x + \hat{z} - z)
 \]
- Manipulate a bit:
 \[
 (J^T \Sigma^{-1}_z J) d = J^T \Sigma^{-1}_z r
 \]
 \[
 \Sigma_z = \text{Cov. of obs 1}
 \]
 \[
 \text{Cov. of obs 2}
 \]
 \[
 = \text{Linearized observation constraint equations}
 \]
 \[
 \text{Over-constraining observations}
 \]
 \[
 \text{State variables}
 \]
Structure of J

- **Relationship to graph**

\[
J_x^0 = \begin{bmatrix}
* & * & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
J_x^1 = \begin{bmatrix}
0 & * & * & 0 & 0 & 0
\end{bmatrix}
\]

\[
J_x^2 = \begin{bmatrix}
0 & 0 & * & * & 0 & 0
\end{bmatrix}
\]

\[
J_x^3 = \begin{bmatrix}
0 & 0 & 0 & * & * & 0
\end{bmatrix}
\]

\[
J_x^4 = \begin{bmatrix}
* & 0 & 0 & 0 & 0 & *
\end{bmatrix}
\]

\[
J_x^5 = \begin{bmatrix}
0 & 0 & * & 0 & 0 & *
\end{bmatrix}
\]

\[
J_x^6 = \begin{bmatrix}
0 & 0 & 0 & * & 0 & *
\end{bmatrix}
\]

Lots of zeros

- $z_0 = f_0(x_0, x_1)$
- $z_1 = f_1(x_1, x_2)$
- $z_2 = f_2(x_2, x_3)$
- $z_3 = f_3(x_3, x_4)$
- $z_4 = f_4(x_0, x_5)$
- $z_5 = f_5(x_2, x_5)$
- $z_6 = f_6(x_3, x_5)$
Our observations are independent:
- Observation covariance matrix is \textit{block diagonal}
- What about its inverse?
 - \textit{also} block diagonal

Is independence of observations a reasonable assumption?
Structure of $J^T \Sigma^{-1} J$

- Because Σ^{-1} is block diagonal, we have:

$$J^T \Sigma^{-1} J = \sum_i J_i^T \Sigma_i^{-1} J_i$$

- This is also evident from our original cost function: we’re minimizing the sum of the squared errors of each observation.
Structure of $J^T \sum_z^{-1} J$

$$J^T \sum_z^{-1} J = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$J_i^x = \begin{bmatrix}
* & * & 0 & 0 & 0 & 0 \\
0 & * & * & 0 & 0 & 0 \\
0 & 0 & * & * & 0 & 0 \\
0 & 0 & 0 & * & * & 0 \\
* & 0 & 0 & 0 & 0 & * \\
0 & 0 & * & 0 & 0 & * \\
0 & 0 & 0 & * & 0 & *
\end{bmatrix}$$
Structure of $J^T \Sigma^{-1} J$

- Key observations:
 - The information matrix remains sparse
 - (Even though the covariance matrix becomes dense)
 - Directly encodes connectivity of pose graph
 - I.e., the adjacency matrix of the Bayes Net

- Sparsity is GOOD— we can exploit it!
Why is sparsity useful?

- Sparse matrix data structures
 - Make computation a function of # of non-zero elements
 - Use memory proportional to # of non-zero elements
Sparse Matrix Representation

- CSR: Compressed Sparse Row
- \(x = [a \ b \ 0 \ 0 \ 0 \ c \ 0 \ 0 \ d \ e \ 0 \ 0 \ 0 \ 0 \ 0 \ f] \)

\(\Rightarrow \)

- \(x = \{ \text{indices} = \{0, 1, 5, 8, 9, 15\}, \text{values} = \{a, b, c, d, e, f\} \} \)
double dotProduct(CSRVec a, CSRVec b) {
 int aidx = 0, bidx = 0;

 while (aidx < a.nz && bidx < b.nz) {
 int ai = a.indices[aidx], bi = b.indices[bidx];

 if (ai == bi) {
 acc += a.values[aidx]*b.values[bidx];
 aidx++;
 bidx++;
 continue;
 }

 if (ai < bi) aidx++;
 else bidx++;
 }

 return acc;
}

a = [a b 0 0 0 c 0 0 d e 0 0 0 0 0 f]

a = { indices = {0, 1, 5, 8, 9, 15 },
 values = {a, b, c, d, e, f } }

b = [0 0 0 g h i 0 0 0 0 0 0 0 0 0 0 0 0]

b = { indices = {3, 4, 5},
 values = {g, h, i} }
We don’t actually do Gaussian Elimination
- G.E. computes the inverse
- So we have to store the inverse!
- Numerical stability issues

We use Cholesky decomposition instead
- Cholesky decomposition works for all symmetric + SPD
Cholesky Decomposition (Review)

\[
\begin{align*}
A &= L \cdot L^T \\
\begin{bmatrix}
16 & 4 & 8 \\
4 & 37 & 20 \\
8 & 20 & 14
\end{bmatrix} &=
\begin{bmatrix}
4 \\
1 \\
2
\end{bmatrix}
\begin{bmatrix}
4 & 1 & 2 \\
6 & 3 \\
1
\end{bmatrix}
\end{align*}
\]
Backsolve

\[
\begin{align*}
L &: \begin{pmatrix}
4 & 1 & 2 \\
1 & 6 & 3 \\
2 & 3 & 1 \\
\end{pmatrix} \\
&= \begin{pmatrix}
4 & 12 & 3 \\
1 & 21 & 3 \\
2 & 3 & 90 \\
\end{pmatrix} \\
\end{align*}
\]

\[
v &= \begin{pmatrix}
48 \\
138 \\
90 \\
\end{pmatrix}
\]
Backsolve

\[L^T \cdot x = v \]

\[
\begin{bmatrix}
4 & 1 & 2 \\
6 & 3 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} =
\begin{bmatrix}
48 \\
138 \\
90
\end{bmatrix}
\]
Cholesky Decomposition

- Strategy: incrementally triangularize \(A \) starting from the top.

- Which of these operations can we do efficiently on sparse matrices?

- Notice: if \(A \) is sparse, output will tend to be sparse
 - But there’s “fill-in” related to how each variable is connected to other variables.
Solving:
- Let: $v = L^T x$. Solve $Lv = b$ for v.
 - How?
- $L^T x = v$
 - Solve for x
Marginalization (Gaussian Elimination)

- The order of the variables in the matrix matters.

\[A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 10 & 0 & 0 \\ 3 & 0 & 20 & 0 \\ 4 & 0 & 0 & 30 \end{bmatrix} \]

- Variable order == which variables are we eliminating?
 - Left-most variable: write all other variables so they are no longer a function of that variable.
 - Variables that are related to many other variables create more fill in.

- What if we changed variable ordering?
 - Let’s try it!
Suppose we want to solve *this* system

- Each node is a variable, which can be written in terms of the variables it’s connected to... just like pose graph.
If we remove “Mind” first, we add many edges.
Finding a good variable ordering

- Marginalizing-out variables causes fill in
- If we marginalize-out early we might commit to fill-in that we could otherwise avoid.
 - Old strategy: marginalize out all landmarks first, then marginalize out poses.

- In short: keeping around extra “state”:
 - might allow us to find a better variable order later
 - reduce fill-in \rightarrow sparsity \rightarrow faster

- What is a good variable ordering?
Maximum Degree Ordering (Bad)

And it just keeps getting worse!
Minimum Degree Example
Minimum Degree Ordering

while nodes remain
 find node \(i \) with smallest node degree
 ordering = \{ ordering, \(i \} \)
 for each \(j \) in neighbors(\(i \))
 add all of neighbors(\(i \)) to neighbors(\(j \))
 end
 remove node \(i \)
end

return ordering

- Complexity?
- Optimal (minimum fill-in)?
SqrtSAM (SLAM algorithm)

- Sparsity, Sparsity, Sparsity
- Keep track of full robot trajectory in state
- Find a good variable reordering
- Sparse Cholesky decomposition + backsolve
Project Presentations

- (12/9) Teams 15-18 present this Wednesday
- (12/14) Teams 19-22 present on Monday
- (12/16) Project writeups due Wednesday (~5p)

- Presentations should be around 20m each
- Video clips suggested, live demos are great but also tricky
- Not a final presentation, but show solid progress and excellent planning