Notes

- Note: JCam resolution change
- Course feedback
- Quiz return
Quiz 1 Results

- $E(x) = 21.68$
- $\sigma(x) = 2.88$
- $85\% = 25.5$

An obvious bug

- **Algorithm 0**
 - Drive towards goal
 - If an obstacle gets in the way, follow the obstacle until we can once again drive towards the goal.

Based on Principles of Robot Motion, Choset et al.
The obvious bug has a bug

Algorithm 1

- Drive towards goal
- If an obstacle gets in the way, circumnavigate the entire obstacle.
- Note the point of closest approach to the goal
- Back track to closest point
- Loop

A better bug
Bug 1

- This bug is special: it's provably complete.
 - Definitions: Let $d()$ be the distance to goal. Let entry, be the point at which we encountered the ith obstacle, exit, is the point at which we left that obstacle.

Lemma 1: The bug leaves every obstacle at a point no farther from the goal than the point it arrived at. I.e., $d(\text{entry}_i) \leq d(\text{exit}_i)$.

Proof: Both $d(\text{entry}_i)$ and $d(\text{exit}_i)$ belong to the perimeter, and $d(\text{exit}_i)$ is the closest point to the goal.

Lemma 2: $d(\text{entry}_{i+1}) < d(\text{exit}_i)$

Proof: The robot heads directly towards the goal after exiting obstacle i. The obstacles do not overlap, and so the robot makes finite progress towards the goal before hitting another obstacle.

Thm: Bug 1 is complete.

Proof: The sequence ${d(\text{entry}_1), d(\text{exit}_1), d(\text{entry}_2), d(\text{exit}_2), d(\text{entry}_3), d(\text{exit}_3), \ldots}$ is monotonically decreasing by Lemma 1 and 2.

Bug 1 Summary

- Complete?
- Optimal?

- **Best case runtime of Bug 1**
 $$D$$

- **Worst case runtime of Bug 1**
 $$D + 1.5 \sum_i P_i$$
Bug 2

- Algorithm 1
 - Construct “m line”
 - Drive toward goal on “m line”
 - If an obstacle gets in the way, begin to circumnavigate the entire obstacle.
 - When we encounter the m-line again closer to the goal, leave the obstacle and drive towards goal on m line.
 - Loop

Bug 2 Challenge

- Bug 2 seems to be much better than bug 1.
- It turns out that it is not always better.
 - Challenge: Find a world in which Bug 1 outperforms Bug 2.
Bug Challenge: Solution

Bug 2 Summary

- Complete?
- Optimal?
- Best case runtime of Bug 2
 \[D \]
- Worst case runtime of Bug 2
 \[D + \sum_{i} \frac{n_i}{2} P_i \]
Motion planning with complete information

- Assume we know the whole world.
 - Obviously, we can do better than a bug algorithm!

- Suppose robot can move in any direction

State-space search
Depth-First Search

- Recursively explore each action until no additional actions are possible.
- In many problems, we can always do something
 - Infinite search depth

- Complete?
- Optimal?

Breadth-First Search

- Expand all action sequences of depth \(n \) before considering sequences of depth \(n+1 \)

- Complete?
- Optimal?
- Complexity?
Informed Search

- Some of these paths are getting farther away from the goal!
 - Why search a bad solution when a better possibility exists?

A*

- For each node in search tree, compute two quantities:
 - cost-so-far
 - min-cost-to-go

- Expand the node with the minimum value of:
 cost-so-far + min-cost-to-go

- If min-cost-to-go is admissible, A* is optimal and complete
 - In fact, A* is optimally efficient: no algorithm can guarantee optimal solutions while expanding fewer nodes
A* Algorithm

```
root = new node();
root.state = initialstate;
root.parent = null;
root.cost-so-far = 0;
root.cost-to-go = h(root.state);
fringe = { root }
do forever
    parent = get node from fringe with minimum cost-so-far + min-cost-to-go
    if parent.state == goalstate
        return solution parent;
    for each action:
        child = new node();
        child.state = propagate(parent.state);
        child.parent = parent;
        child.cost-so-far = parent.cost-so-far + cost(action);
        child.min-cost-to-go = h(child.state);
        child.action = action;
        add child to fringe
    end for
end do
```

A* Optimality Proof

Thm: A* is optimal

Proof: (By Contradiction) Suppose that A* computes a suboptimal answer x. This means that cost(x) > cost(x') for some other x'.

We know that some prefix p of x' exists in the fringe. Since the heuristic never over-estimates the cost to goal, we have cost-so-far(p) + cost-to-go(p) <= cost(x').

Since nodes are removed in order of least total cost, node p will be expanded before node x. Thus, we never expand a suboptimal node.
A* Heuristic Function

- As we see, optimality depends on heuristic function never over-estimating cost-to-go.

- Tighter estimates \rightarrow fewer nodes expanded

- Bad news: If heuristic function under-estimates true cost by more than log(actual cost), A* has exponential complexity.
 - Is this the common case or not?

A* for high-level planning

- Finding routes in road networks
A* Applications

A* for low-level planning

- Vanilla A* not a great choice for most low-level planning problems, unless:
 - Optimal results are required
 - Relatively small number of actions
 - Relatively large number of possible states

- Variants on A*
 - IDA*
 - MDA
IDA*

- **Cost-limited-A**(problem, cost-limit)
 - Just like A*, except does not expand any nodes whose cost underestimate exceeds cost-limit.
 - If failure, returns cost-limit of smallest un-expanded node

IDA(problem)

```plaintext
limit = \epsilon

do forever
  \{solution, next-cost\} = Cost-Limited-A*(problem, limit)
  if solution not null
    return solution
  limit = max(next-cost, limit + \epsilon)
end do
```

How can this not be a terrible idea?
A* Summary

Pros:
- Complete
- Optimal
- Optimally Efficient
- Easy to implement
- Works well when number of actions is small
 - Size of state space does not directly search complexity

Cons:
- Worst-case cost no better than breadth-first: $O(b^d)$
- Large memory costs: $O(b^d)$
- Large computational costs
 - Even with a MinHeap
- Can be exceptionally slow if the optimal solution has large cost and there are many good looking (but ultimately futile) paths

Wavefront Planning

- Searching in along possible action sequences can be wasteful
 - Same cells are visited over and over again.

- Idea: Compute best path from every node to the goal
 - This is trivial for the goal node
 - It’s trivial for the nodes adjacent to the goal node
 - It’s trivial for the nodes adjacent to the nodes adjacent to the goal node
 - It’s trivial for nodes $(n+1)$ away from the goal, given the best path for nodes (n) away from the goal.
Wavefront Planning: Algorithm

wavefront = { goal }
for all nodes n
 dist(n) = infinity
end for
dist(goal) = 0

do
 newwavefront = { }
 for each node n in wavefront
 for each reachable neighbor n' of n
 dist(n') = min(dist(n'), dist(n) + cost(n, n'))
 newwavefront = { newwavefront, n' }
 end for
 end for
 wavefront = newwavefront
until (wavefront contains start node)

Wavefront Planning: Algorithm 2

- Previous algorithm computes minimum distance from every point to goal.

- How do we get the solution from these distances?
Wavefront: Summary

- Pros
 - Complete
 - Optimal
 - Extremely fast when state space is small
 - Action space affects performance only modestly.
 - Only have to recomputed when goal point changes.

- Cons
 - What happens if vehicle state is multi-dimensional or continuous?
We’ve assumed our robot is a point so far

But real robots take up space!
- In PS4 we solve this problem by checking for collisions in multiple locations corresponding to the size of the robot. This takes a lot of CPU time!

Can we pre-compute a set of states that are collision-free?
- Constrain our search to these states

Conventional collision checking using free space
- Must check for collisions at every position occupied by the robot

Configuration space
- Precompute collision test for every state of the robot
 - Can be easily computed via convolution of obstacles with robot footprint
 - Collision check requires testing configuration space at a single point
Configuration Space

- What if our vehicle is not radially symmetric?
 - I.e., legality of a position depends not just on \((x,y)\) but also \(\theta\)?

- No problem!
 - Expand configuration space into third dimension
 - Pre-compute collision for all \((x,y,\theta)\) tuples.
 - Um, wait….

Approximate configuration spaces

- Solution 1: Use bounding circle of robot as footprint
 - Overly conservative
 - Collision checks = single point test in configuration space (fast).
Approximate configuration spaces

Step 1: Build configuration space for a useful shape
- E.g., a circle whose diameter = width of car

A collision test now becomes a line test in configuration space
- Only slightly conservative, at the expense of more configuration space testing.

Approximate configuration spaces

Exploit kinematic constraints
- Cars can only drive in a (mostly) straight line.
- We need to perform collision tests for vehicle trajectories, not just stationary vehicles.

- For a car, the collision test for the trajectory is coincident with the collision test for the vehicle body.
 - I.e., the same line test used to test trajectories for collisions can compute the collision test for the vehicle body "for free"!
 - (Actually, we have to extend the trajectory by the length of the car.)

Huge win: Only need a 2D configuration space. Get speed and most of the accuracy of a 3D configuration space.
Non-Deterministic Planning

- Consider sequences of random actions
 - Build a tree of actions
 - Node = state
 - Edge = action
 - A plan is a sequence of actions, i.e., a path from the root (initial state) to a leaf near the goal

- Skeleton algorithm:
 - while time remains
 - Select a node (call it parent) in the tree
 - Generate a new action \(a \)
 - Create new node: \(\text{child} = \text{propagate}(\text{parent}, a) \)
 - If action is safe
 - Add node to tree
 - return best plan found so far

Planning Variants

- We'll consider three basic variants
 - Random: Pick a parent node at random. Pick an action at random.
 - RRT: Pick a destination at random. Find parent node that is closest to destination. Compute action that goes towards destination
 - RRT-Biased: Pick the destination randomly, but in a biased way (i.e., prefer directions that are heuristically likely to work out)
Random Policy

- Random: Pick a parent node at random. Pick an action at random.

Random Policy: Analysis

- Complete?
- Optimal?
- Practical?
RRT Policy

- **RRT**: Pick a destination at random. Find parent node that is closest to destination. Compute action that goes towards destination.

RRT Policy (Biased Sampling)

- **RRT-Biased**: Pick the destination randomly, but in a biased way (i.e., prefer directions that are heuristically likely to work out).
RRT: Trunking

- State of tree at t_i limits state of tree at t_{i+1}

- New edges always connect closest part of tree: never generate a completely new route to an area we already have a route to

- How could you address this?

RRT for bicycle: Mini-Quiz

- What is the action space for the bicycle?

- What are the kinematic constraints?
 - How do we satisfy them?

- What are the dynamic constraints?
RRT: Analysis

- Complete?
- Optimal?
- Practical?