Covariance Projection

- Suppose we know something about random variable x:
 \[x \sim N(\mu_x, \Sigma_x) \]

- And suppose I know a function y:
 \[y = f(x) \]

- What is the distribution of y?
 - Let’s derive μ_y, Σ_y
Mean Projection

- Let’s start with the linear case:
 \[y = f(x) \]
 \[y = Ax + b \]

- What is \(E(y) \)?
 \[\mu_y = E(y) \]
 \[= E(Ax + b) \]

- Simplify:
 \[\mu_y = AE(x) + b \]

Covariance Projection

- Reminders:
 \[\Sigma_y = E[(y - E[y])(y - E[y])^T] \]
 \[\mu_y = AE(x) + b \]

\[\Sigma_y = E[(Ax + b - A\mu_x - b)(Ax + b - A\mu_x - b)^T] \]
\[= E[(Ax - A\mu_x)(Ax - A\mu_x)^T] \]
\[= E[A(x - \mu_x)(x - \mu_x)^T A^T] \]
\[= AE[(x - \mu_x)(x - \mu_x)]A^T \]
\[= A\Sigma_x A^T \]
Non-linear case

- Again, suppose:
 \[x \sim N(\mu_x, \Sigma_x) \]
 \[y = x + b \quad y = f(x) \]

- Approach: approximate \(f(x) \) with Taylor expansion
 - What point should we approximate \(f(x) \) around?

Projecting covariances (non-linear case)

- First-order Taylor expansion
 - Let’s review 1D case

\[
y \approx \left. \frac{df}{dx} \right|_{x_0} (x - x_0) + f(x_0)
\]
Projecting covariances (non-linear case)

- Generalized case:
 \[y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots
\end{bmatrix} = \begin{bmatrix}
 f_1(x_1, x_2, \ldots) \\
 f_2(x_1, x_2, \ldots) \\
 \vdots
\end{bmatrix} \]

 \[y \approx \begin{bmatrix}
 \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \ldots \\
 \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \ldots \\
 \vdots & \vdots & \vdots
\end{bmatrix} \begin{bmatrix}
 x_1 - x_{10} \\
 x_2 - x_{20} \\
 \vdots
\end{bmatrix} + \begin{bmatrix}
 f_1(x_{10}, x_{20}) \\
 f_2(x_{10}, x_{20}) \\
 \vdots
\end{bmatrix} \]

 "Jacobian"

 \[\bar{y} \approx J|_{\bar{x}_0} (\bar{x} - \bar{x}_0) + f(\bar{x}_0) \]

Projecting covariances (non-linear case)

- \[y \approx J|_{x_0} (x - x_0) + f(x_0) \]

\[y \approx J|_{x_0} x - J|_{x_0} x_0 + f(x_0) \]

\[y = Ax + b \]

\[\Sigma y = A \Sigma x A^T \]

Non-linear case is reduced to linear case via first-order Taylor approximation.

What do we lose by dropping higher order terms?
Odometry Example

- How to convert left/right ticks to a change in position?

\[
\Delta x = \frac{d_R + d_L}{2} \\
\Delta \theta = \frac{d_R - d_L}{d_B}
\]
Odometry Example

- Sensors observe:
 - Counts on left and right wheels

- No “noise” in those counts, however, there’s slippage. Model distance as:
 \[d_R = \alpha c_R + w_1 \]
 \[d_L = \alpha c_L + w_2 \]

- Noise \(w_1, w_2 \) are iid Gaussian:
 \[w_1, w_2 \sim N(0, \sigma^2) \]

Odometry Example: Plan

- \(d_R, d_L \) are \(f(\text{encoder counts}) \)

\[\Delta x = \frac{d_R + d_L}{2} \]
\[\Delta \theta = \frac{d_R - d_L}{d_B} \]

- \(\Delta x, \Delta y \) are \(f(d_R, d_L) \)

- We’ll project the covariances \textit{twice}!
Odometry: First projection

- What’s the uncertainty of d_R, d_L?

$$
\begin{bmatrix}
 d_R \\
 d_L
\end{bmatrix}
= \begin{bmatrix}
 \alpha & 0 & 1 & 0 \\
 0 & \alpha & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 c_R \\
 c_L \\
 w_1 \\
 w_2
\end{bmatrix}
$$

$$
\Sigma_d = A \Sigma_w A^T
$$

But what’s Σ_w??

Odometry Example

$$
\begin{bmatrix}
 d_R \\
 d_L
\end{bmatrix}
= \begin{bmatrix}
 \alpha & 0 & 1 & 0 \\
 0 & \alpha & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 c_R \\
 c_L \\
 w_1 \\
 w_2
\end{bmatrix}
$$

$$
\Sigma_d = A \Sigma_w A^T
$$

But what’s Σ_w??

Remember, we said c_R, c_L were “error-free”, and $w_1, w_2 \sim N(0, \sigma^2)$ (iid)

$$
\Sigma_w = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & \sigma^2 & 0 \\
 0 & 0 & 0 & \sigma^2
\end{bmatrix}
$$
Odometry Example

- We are half-way there now!

\[
\Sigma_d = \begin{bmatrix} \alpha & 0 & 1 & 0 \\ 0 & \alpha & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma^2 & 0 \\ 0 & 0 & 0 & \sigma^2 \end{bmatrix} \begin{bmatrix} \alpha & 0 & 1 & 0 \\ 0 & \alpha & 0 & 1 \end{bmatrix}^T
= \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}
\]

- Does this make intuitive sense?
 - Answer is 2x2?
 - No alphas?

Odometry: second projection

- We’ve gone from \(\Sigma_w \) to \(\Sigma_d \)
- Now, we need to go from \(\Sigma_d \) to \(\Sigma_x \)

\[
\begin{align*}
d_R &= \alpha c_R + w_1 \\
d_L &= \alpha c_L + w_2 \\
\Delta x &= \frac{d_R + d_L}{2} \\
\Delta \theta &= \frac{d_R - d_L}{d_H}
\end{align*}
\]
Odometry Example

- Write x in terms of d

\[
\begin{bmatrix}
\Delta x \\
\Delta \theta
\end{bmatrix} =
\begin{bmatrix}
1/2 & 1/2 \\
1/d_B & -1/d_B
\end{bmatrix}
\begin{bmatrix}
d_R \\
d_L
\end{bmatrix}
\]

\[
\Delta x = \frac{d_R + d_L}{2}
\]

\[
\Delta \theta = \frac{d_R - d_L}{d_B}
\]

\[
\Sigma_x = B \Sigma_d B^T
\]

Odometry Example

- We’re done!

\[
\Sigma_x = \begin{bmatrix}
1/2 & 1/2 \\
1/d_B & -1/d_B
\end{bmatrix}
\begin{bmatrix}
\sigma^2 & 0 \\
0 & \sigma^2
\end{bmatrix}
\begin{bmatrix}
1/2 & 1/2 \\
1/d_B & -1/d_B
\end{bmatrix}^T
\]

\[
= \begin{bmatrix}
1/2\sigma^2 & 0 \\
0 & 2\sigma^2/d_B^2
\end{bmatrix}
\]

- Cross-correlations happen to cancel out
 - This does not happen in general!
Sampling from Gaussians

- How do we generate random samples from a Gaussian distribution?

 \[y \sim N(\mu_y, \Sigma_y) \]

- Idea: sample from a simpler Gaussian distribution, then project.

- We'll assume we can sample from \(N(0, I) \)

Sampling from Gaussians

- Well, suppose we know \(L \) such that:

 \[y = Lw + \mu_y \]

- This would make \(y \sim N(\mu_y, LL^T) \)

- So, we just need to find an \(L \) such that \(\Sigma_y = LL^T \)

 - Cholesky decomposition
Sampling Algorithm

- Sample from Gaussian $y \sim N(\mu_y, \Sigma_y)$
 - Factor $\Sigma_y = LL^T$
 - Generate Gaussian noise w with $w \sim N(0, I)$
 - return $y = Lw + \mu_y$