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L12. COVARIANCE PROJECTION

EECS 498-6: Autonomous Robotics Laboratory

Covariance Projection
2

 Suppose we know something about random 
variable x:

 And suppose I know a function y:

 What is the distribution of y?

 Let’s derive 
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Mean Projection
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 Let’s start with the linear case:

 What is E(y)?

 Simplify:

Covariance Projection
4

 Reminders:
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Non-linear case

 Again, suppose:

 Approach: approximate f(x) with Taylor 

expansion

What point should we approximate f(x) around?

Projecting covariances

(non-linear case)

 First-order Taylor 

expansion

 Let’s review 1D case

y

xx0
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Projecting covariances

(non-linear case)

 Generalized case:

“Jacobian”

Projecting covariances

(non-linear case)

bA

Non-linear case is reduced to linear case via first-order Taylor 

approximation.

What do we lose by dropping higher order terms?
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Odometry Example

Odometry Example

 How to convert 

left/right ticks to a 

change in 

position?
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Odometry Example

 Sensors observe:

Counts on left and right wheels

 No “noise” in those counts, however, there’s 

slippage. Model distance as:

 Noise              are iid Gaussian:

Odometry Example: Plan
13

 are f(encoder counts)

 are f(           )

 We’ll project the covariances twice!
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Odometry: First projection

 What’s the uncertainty of              ? 

A

w

d

But what’s           ??? 

Odometry Example

Remember, we said             were “error-free”, 

and                                   (iid)

But what’s           ??? 

z
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Odometry Example

 We are half-way there now!

 Does this make intuitive sense?

 Answer is 2x2?

 No alphas?

Odometry: second projection

 We’ve gone from        to

 Now, we need to go from        to 
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Odometry Example

 Write x in terms of d

B dx

Odometry Example

 We’re done!

 Cross-correlations happen to cancel out

 This does not happen in general!
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Sampling from Gaussians
20

 How do we generate random samples from a 
Gaussian distribution?

 Idea: sample from a simpler Gaussian 
distribution, then project.

 We’ll assume we can sample from           

Sampling from Gaussians
21

 Well, suppose we know L such that:

 This would make

 So, we just need to find an L such that

Cholesky decomposition   
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Sampling Algorithm

 Sample from Gaussian

 Factor                     

Generate Gaussian noise w with

 return 


