

Today's Plan

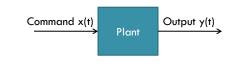
- Simple controllers
 - Bang-bang
 - PID
- Pure Pursuit

Control

- Suppose we have a plan:
 - "Hey robot! Move north one meter, the east one meter, then north again for one meter."
- □ How do we execute this plan?
 - How do we go exactly one meter?
 - How do we go exactly north?

Open Loop (Feed forward)

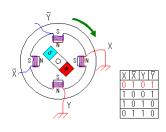
- Idea: Know your system.
 - If I command the motors to "full power" for three seconds, I'll go forward one meter.



Is this a good idea?

Open Loop: XYZ Positioning table

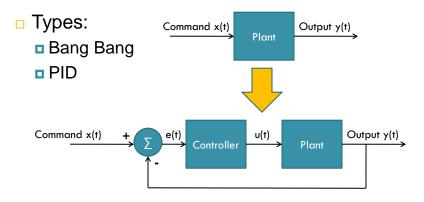
 Physical construction of stepper motors allows precise open-loop positioning



Credit: electricsteppermotors.com

Closed Loop

 Use real-time information about system performance to improve system performance.



Bang Bang Control

Actuator is always at one of its limits

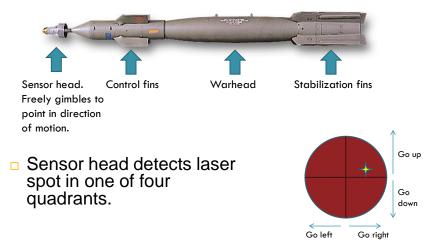
Bang-Bang:

while (true)
 if (error < 0)
 Command(maximum value)
 else
 Command(minimum value)
end</pre>

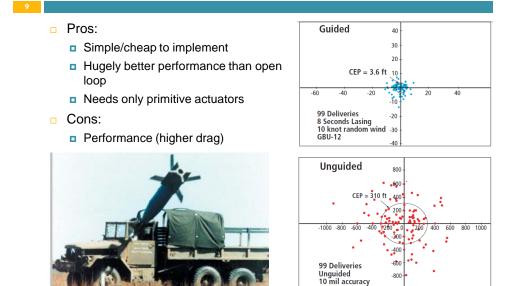
This is stupid. No one would do this.

Especially for something important....

Bang Bang... Bang.



Bang Bang Control (Continued)



Proportional Control

 Obvious improvement to Bang-Bang control: allow intermediate control values

 $\Box u(t) = K_p e(t)$

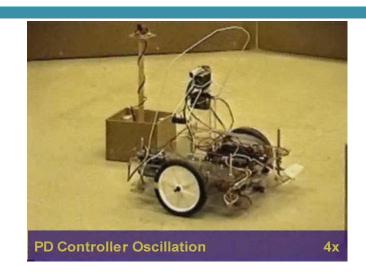
10

 Intuition: If e(t) > 0, goal position is larger than current position. So, command a larger position.

Proportional Control

- We want to drive error to zero quickly
 This implies large gains
- We want to get rid of steady-state error
 - If we're close to desired output, proportional output will be small. This makes it hard to drive steady-state error to zero.
 - This implies large gains.
- Really large gains?Bang-bang control.
- What's wrong with really large gains?
 Oscillations. (We'll come back to this)

Proportional Control: Oscillation



<text>

Derivative Control

- Our vehicle doesn't respond immediately to our control inputs.
 - From the controller's perspective, there's a delay.
- □ We need to "dampen" the behavior of the system.
 - When we're getting close to our desired value, slow down a bit!
- Problem: computing derivatives is very sensitive to noise!

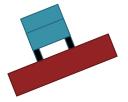
Derivative control is "happy" when we're driving parallel to desired path. Things not getting better, but not getting worse either.

PD Controller

- Combine P and D terms
 - P seeks error = 0
 - D seeks d/dt error = 0
 - D term helps us avoid oscillation, allowing us to have bigger P terms
 - Faster response
 - Less oscillation

Integral Control

- Suppose we're in steady state, close to desired value.
 - D term is zero
 - P term is nearly zero
- P term may not be strong enough to force error to zero
 - Perhaps the car is on a hill
 - Perhaps the actuator is misaligned
 - We're not commanding what we think



Integral Control

- If we have error for a long period of time, it argues for additional correction.
- Integrate error over time, add to command signal.
- Force average error to zero (in steady state)

PID Control

Combine all three types together, different gains for each type:

$$u(t) = K_p e(t) + K_d \frac{d}{dt} e(t) + K_i \int e(t) dt$$

- □ Note: we often won't use all three terms.
 - Each type of term has downsides
 - Use only the terms you need for good performance
 - Avoid nasty surprises

Computing Gains

- Where do PID gains come from?
 - Analysis
 - Carefully model system in terms of underlying physics and PID controller gains.
 - Compute values of PID controller so that system is 1) stable and 2) performs well
 - Empirical experimentation
 - Hard to make models accurate enough: many parameters
 - Often, easy to tune by hand.

PID Tuning

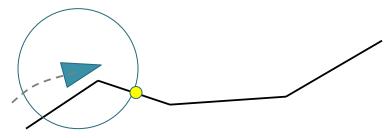
- Very simple PID tuning procedure:
 - 1. Increase P term until performance is adequate or oscillation begins
 - 2. Increase D term to dampen oscillation
 - 3. Go to 1 until no improvements possible.
 - 4. Increase I term to eliminate steady-state error.
- Better procedure
 - Ziegler-Nichols Tuning Method

Integrator Gotchas

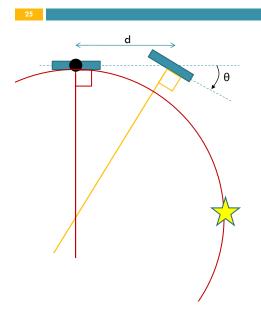
- Integrator wind-up:
 - Suppose it takes a large command to eliminate steady state error. (I.e., the hill is VERY steep)
 - If desired command changes, it can take a long time to "drain" the integrator. → bad system performance
- Solutions
 - Clamp integrator

Pure Pursuit

- Given a nominal path:
 - Pick a point on the path some distance ahead
 - "lookahead" distance can be constant or f(velocity)
 - Steer car at it
 - Repeat



Pure Pursuit



- What steering angle will put us on a collision course with the goal point?
 - Constant curvature
 - **\square** Solve for θ

Pure Pursuit: Analysis

□ Pros:

27

- Paths are kino-dynamically feasible by construction
- Low-level stability (controller compensates for errors)

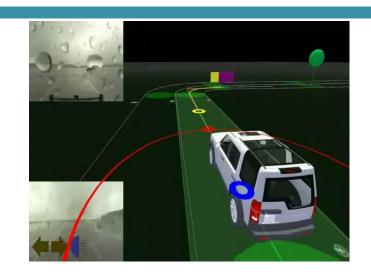
Cons:

- Actual path may not look much like poly line
 - (Why is that a con?)
- Low-level controller does not know why a particular plan was selected.
 - It does not know the best way to recover in the event of an error.

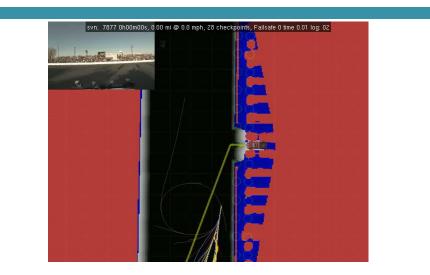
Pure Pursuit + RRT

- Pure Pursuit can be used as edge-growth strategy for RRT
 - Planner must predict pure pursuit path for correct obstacle avoidance
 - This method used on MIT Urban Challenge vehicle

Pure Pursuit + RRT



Pure Pursuit + RRT



Next time

31

- "Soft" constraints
- Configuration Space