Exploiting Sparsity

Representation:
Linked List? -> very compact, easy to add entries, but slow for important ops.
Compressed Sparse Row (CSR)

\[[0, 0, 3, 4, 0, 0, 1] \]

\[\Rightarrow \text{indices} = \{2, 3, 6\} \text{ sorted so indices is from left to right,} \]
\[\text{values} = \{3, 4, 1\} \]

Consider dot product of vector above with:
\[\text{indices} = \{1, 3, 4, 6\} \]
\[\text{values} = \{2, 2, 2, 2\} \]

Answer? 10
Write pseudo-code,

Gaussian Elimination
Basic operation:
\[s = a + \beta b \] (why?)

Can this be accelerated using CSR?

Remember: we wouldn't actually use G, E - but it's illustrative.
We've ignored pivots, for example!
Posterior Covariance

We've mostly focused on ML solutions, but we know the posterior of a least-squares problem is itself a Gaussian.

\[M = \text{ML estimate.} \]

\[\Sigma_x \]

To solve this system, we formulated a quadratic loss that looked like:

\[(z(x) - z)^T \Sigma_z^{-1} (z(x) - z) \]

We approximated

\[z(x) \approx \frac{z}{J_x^2} \Delta x + z(x_0) \]

so:

\[(J_x \Delta x - r)^T \Sigma_z^{-1} (J_x \Delta x - r) \]

where \(r = z_{x_0} - z(x_0) \)

This system can be viewed as one enormous multi-variate Gaussian in the space of the \(z \)'s (not the \(x \)'s)

Let's manipulate this eqn so that it looks like a quadratic loss in terms of \(x \):

\[\Delta x^T J^T \Sigma_z^{-1} J \Delta x - 2 \Delta x^T J^T \Sigma_z^{-1} r + \frac{\Delta M}{\text{some constant}} \]

\[\Rightarrow (\Delta x - \frac{r}{J^T \Sigma_z^{-1} J})^T J^T \Sigma_z^{-1} J (\Delta x - \frac{r}{J^T \Sigma_z^{-1} J}) \]

some mess to complete the square.

\[\Sigma_x^{-1} \]
\[\Sigma_x^{\dagger} \text{ was staring at us the whole time!} \]

\[(J^T \Sigma_x^{-1} J) \Delta x = J^T \Sigma_x^{-1} r \]

not just the "A" in our \(Ax = b \) problem,
but also \(\Sigma_x^{-1} \).

\[\Sigma_x^{-1} \text{ is sparse, as we've discussed,} \]

what about \(\Sigma_x \)? \(< \text{Not sparse in general,} \>

Implication \(\Sigma_x \) takes \(O(n^2) \) storage, quickly becomes problematic.

When do we want \(\Sigma_x \)?
- data association, mostly. But an approximation is usually good enough.

Which landmarks should I test for data association? (Which features could be within sensor range: \(r^2 \)?)
How do we compare two SLAM algorithms? Let's ignore runtime & focus on quality... for now.

There is a correct solution. If both algorithms find the correct solution, they're both equally good... "optimal".

\[
x^* = \arg \min_x (Jx - r)^T \Sigma^{-1}_\epsilon (Jx - r)
\]

Our cost function, \(\mathcal{K}^2(x) \).

What if the methods aren't optimal?

Is \(x_a \) better than \(x_b \)? if \(\mathcal{K}^2(x_a) < \mathcal{K}^2(x_b) \)?

\[
\begin{array}{c}
\mathcal{K}^2(x) \\
\hline
x_a \quad x^* \quad x_b
\end{array}
\]

Is \(x_a \) better than \(x_b \)? Arguably not...

An imperfect SLAM solution is characterized in two ways:
- Its error in the \(\mathcal{K}^2 \) direction (\(\mathcal{K}^2 \))
- Its error in the \(x \) direction. (MSE)

Which error do you value more? Probably \(x \)!

Should MSE beeval'd w/ ground truth or numerical optimum? -can tip example.

(show CSW mops in which \(\mathcal{K}^2 \) is a bad predictor of quality)
Problems with MSE:

- it presupposes knowing the answer!
- useful for off-line (controlled evaluations), not online.

\(\chi^2 \)

- Do we know what \(\min_x \chi^2(x) \) is?
- also presupposes the answer.

Why would we want to know?

\(\chi^2(x_{row}) - \chi^2(x_{min}) \) could help us decide if we need more iterations.

Good News!

\(\chi^2 \) follows a distribution.
- parameterized by "degrees of freedom."

- Intuition: the more observations, the more \(\chi^2 \) error we expect.

Degrees of freedom:

\[\text{# of observation egns - # state variables} \]

\[\text{DOF} \]

- Useful Fact: \(E[\frac{\chi^2}{\text{DOF}}] = 1 \).

- Can use as a guide: when to iterate
- Warning: what happens if noise models are wrong?