EECS568 Mobile Robotics: Methods and Principles
Prof. Edwin Olson

L04. Least Squares SLAM
Least-squares regression

- We collect simultaneous equations, then solve for x.
 - Or change in x for non-linear regression

\[A\Delta x = b \]

\[A x = b \]
Non-linear least squares

\[x^2 + 3x + y^3 + y = 4 \]
\[\sin(x) + y^2 = 1 \]
\[x + 2/y = 4 \]

\[f(x) = b \]

\[J|_{x_0}(x - x_0) + f(x_0) = b \]

\[x_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]
Solution

\[
\begin{bmatrix}
3 & 4 \\
1 & 2 \\
1 & -2
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
+
\begin{bmatrix}
2 \\
1 \\
2
\end{bmatrix}
=
\begin{bmatrix}
4 \\
1 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
3 & 4 \\
1 & 2 \\
1 & -2
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
=
\begin{bmatrix}
2 \\
0 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Delta x \\
\Delta y
\end{bmatrix}
=
\begin{bmatrix}
1.2 \\
-0.4333
\end{bmatrix}
\]
Weighted least-squares (non-probabilistic story)

• What if we want some equations to count more than others?
 ▶ What happens if we repeat an equation?
 - It counts twice
 ▶ Least squares minimizes the squares of the residuals
 - What if we multiply an equation by \(w \)?
 - Its residual gets scaled by \(w \)!

 ▶ Why does multiplying one eqn by 1.414 equivalent to repeating it twice?

because error is a vector... and \([1.414 \ 1.414]\) has the same length as 2
Weighted least-squares (probabilistic story)

- Where do we get the weights?
 - Consider the uncertainty of each equation

\[
\begin{align*}
x^2 + 3x + y^3 + y + w_1 &= 4 \\
\sin(x) + y^2 + 4w_2 &= 1 \\
x + \frac{2}{y} + x(w_1 + w_2) &= 1
\end{align*}
\]

- How should we “scale” each equation?

\[
\Sigma_w = \begin{bmatrix}
\sigma_1^2 & 0 \\
0 & \sigma_2^2
\end{bmatrix}
\]
Weighted least squares

• Consider the uncertainty of each equation

 ▶ What’s the covariance of the set of hyperplanes?

\[
\Sigma = \begin{bmatrix}
 1 & 0 \\
 0 & 4 \\
 x_0 & x_0
\end{bmatrix}
\begin{bmatrix}
 \sigma_1^2 & 0 \\
 0 & \sigma_2^2 \\
 x_0 & x_0
\end{bmatrix}
\begin{bmatrix}
 1 & 0 \\
 0 & 4 \\
 x_0 & x_0
\end{bmatrix}^T
\]

\[
\Sigma^{-1} J \Delta x = \Sigma^{-1} b
\]
SLAM

• Simultaneous Localization and Mapping
 ▸ Why do we call it this?

• Front ends
 ▸ Sensor processing (not today)
 ▸ Estimation

• Our approach today:
 ▸ Weighted least squares for estimation
State representation

- Robot is operating in the 2D plane; each robot pose represented by:

$$x_i = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$

- Landmarks (e.g. trees)

$$f_i = \begin{bmatrix} x \\ y \end{bmatrix}$$
State vector

- Of course, actual order of variables in state vector doesn’t matter
 - (A, x, and b need to agree on order, of course)
Propagation steps

- Robot is driving down a hallway
 - State added at every time step
 - Equations relate state at time $t+1$ to time t

\[
\begin{align*}
x_2 &= d_1 \cos(\theta_1) - d_1 \sin(\theta_1) + x_1 + w_1 \\
y_2 &= d_1 \sin(\theta_1) + d_1 \cos(\theta_1) + y_1 + w_2 \\
\theta_2 &= \theta_1 + \Delta \theta_1 + w_3
\end{align*}
\]

$w_1 \sim N(0, \sigma_1^2)$
$w_2 \sim N(0, \sigma_2^2)$
$w_3 \sim N(0, \sigma_3^2)$
Collect equations...

\[
\begin{align*}
x_2 &= d_1 \cos(\theta_1) - d_1 \sin(\theta_1) + x_1 + w_1 \\
y_2 &= d_1 \sin(\theta_1) + d_1 \cos(\theta_1) + y_1 + w_2 \\
\theta_2 &= \theta_1 + \Delta\theta_1 + w_3 \\
x_3 &= d_2 \cos(\theta_2) - d_2 \sin(\theta_2) + x_2 + w_4 \\
y_3 &= d_2 \sin(\theta_2) + d_2 \cos(\theta_2) + y_2 + w_5 \\
\theta_3 &= \theta_2 + \Delta\theta_2 + w_6
\end{align*}
\]

• And collect terms to write in matrix form.
Simple example

- 1D robot

\[
x_2 = x_1 + d_1 + w_1
\]
\[
x_3 = x_2 + d_2 + w_2
\]
\[
x_4 = x_3 + d_3 + w_3
\]
\[
x_5 = x_4 + d_4 + w_4
\]

\[
x_2 - x_1 = d_1 + w_1
\]
\[
x_3 - x_2 = d_2 + w_2
\]
\[
x_4 - x_3 = d_3 + w_3
\]
\[
x_5 - x_4 = d_4 + w_4
\]
Loop closures

\[z_0 = f_0(x_0, x_1) \]
\[z_1 = f_1(x_1, x_2) \]
\[z_2 = f_2(x_2, x_3) \]
\[z_3 = f_3(x_3, x_4) \]
\[z_4 = f_4(x_0, x_5) \]
\[z_5 = f_5(x_2, x_5) \]
\[z_6 = f_6(x_3, x_5) \]
Effects of linearization

- When does linearization become a problem?
 - Rotations are the common killer [consider sin(x)]:
 - Even at favorable points (where derivative is at an extremum), an error of $\pi/4$ can yield the wrong sign!
 - Rules of thumb
 - a potential problem at 30 degrees
 - potentially catastrophic at 67 degrees
Consider Newton’s method for finding roots of \(\sin(x) \)

\[
\text{do } \\
\quad x = x - \frac{\sin(x)}{\cos(x)}; \\
\text{until converged}
\]

Region of convergence?

- +/- 67 degrees
Rank Deficiency

- Our problem will always be rank deficient
 - Even if we have many loop closures. Why?

- How do we solve this problem?
 - “Pin” the first pose. (How?)