L21. Features from camera data
Color Cameras

• Incoming light is described in terms of a power spectral density
• “Color” isn’t a physical property of light
 ‣ It’s made up by our eyes and brain!
 ‣ Different types of incoming light can have the same “color”
Bayer Patterns
Bayer Patterns

• Why does this matter?
 ▸ At each pixel, two color channels are interpolated based on nearby pixels

• Thus, a color camera is more blurry than a monochrome camera.
 ▸ e.g., Monochrome cameras give slightly better results for AprilTags
Bayer Pattern Artifacts

• When the color of an area is uniform, Bayer patterns work well.

• What happens when there is a rapid change in color?
 ▸ R, G, and B sub-pixels may observe different PSDs
 ▸ Interpolated colors may not exist anywhere!

Average of nearby red pixels = red... so there will be a red output pixel even though the incoming light is either white or black.
Why extract features from camera images?

- Motivation: understanding images is really hard!
 - Lots of data
 - Some parts of the image are “boring”

- Idea: extract “good” features
 - From 1M pixels to 100s of features
 - Can make features robust
Corner Detectors

• Intuitively, corners are a good feature.
 ‣ Relatively easy to find
 ‣ Trackable

• But what is a corner?
 ‣ We’re processing from bottom-up
 ‣ No idea (yet) about objects
 • a corner != object corner

• What isn’t a corner?
 ‣ Uniform areas
 ‣ Edges/lines
Image Gradients

• Idea: let’s look at gradients of a patch of pixels
 ▸ Gradient at pixel a is (b-a, c-a)

 a
 b
 c

• Compute gradients for 2x2 area
 ▸ We need 3x3 input…
Image Gradients

- Are these good corners?
 - (What are the gradients?)
Image Gradients

• Are these good corners?
 ▶ (What are the gradients?)
Image Gradients

• Are these good corners?
 ▶ (What are the gradients?)
Image Gradients

• Are these good corners?
 › (What are the gradients?)
Image Gradients

• Are these good corners?
 ▶ (What are the gradients?)
Image Gradients

- Are these good corners?
 - (What are the gradients?)
Image Gradients

• Are these good corners?
 ▶ (What are the gradients?)
Image Gradients

- Are these good corners?
 - (What are the gradients?)
Good and Bad Corners

- Good Corners

- Bad Corners

- What do good/bad corners have in common?
Corners in gradient space

Good Corners
Corners in gradient space

Good Corners

Bad Corners
Harris Corner Detector

- Good Corners

- Bad Corners

- Idea: The “fatness” of the covariance ellipse of the gradient directions is a measure of “cornerness”
 - How do we compute this?
Computing corner response

- Compute S matrix
 - Covariance of the gradients
 \[S = \sum_i g_i g_i^T \]

- Compute eigen-values
 - Corner response = \textit{smallest} eigen value
 - How bad (computationally) is this?

- Identify pixels with “good” corner responses
 - Thresholding
Computing corner response

• Compute S matrix
 ‣ Covariance of the gradients
 \[S = \sum_i g_i g_i^T \]

• Compute eigen-values
 ‣ Corner response = \textit{smallest} eigen value
 ‣ How bad (computationally) is this?

• Identify pixels with “good” corner responses
 ‣ Thresholding

• A handful of practical issues!

• Noise in original image
 ‣ Creates false positives
 ‣ Apply low-pass filter \textit{first}
 ‣ Also improves isotropicity of response

• Local maximum suppression

• How big a patch to compute gradients over?
Kanade Tomasi

prefilt sigma = 2.3
window size = 5
thresh = 0.05
Actually, I lied.

- There are two very closely related corner detectors
 - Kanade-Tomasi
 - what we described (uses eigenvalues)
 - Harris
 - identical, except uses (bad) approximation of eigenvalue.

\[
\begin{align*}
\text{trace}(S) &= \lambda_1 + \lambda_2 \\
\det(S) &= \lambda_1 \lambda_2 \\
M &= \det(S) - \kappa \text{trace}(S)^2
\end{align*}
\]

“Area of ellipse, minus a penalty for those that are highly eccentric.”
Difference of Gaussians

- Another way of looking at corner detectors
 - Look for areas with high frequency in both directions

- What frequencies to look for?
 - We want a band pass
 - not too high (it’s noise!)
 - not too low (it’s not a corner!)

- Filter an image with two different Gaussians
 - Each corresponds to a low-pass filter
 - Difference corresponds to a band-pass filter
DoG, \(\sigma_1 = 5, \sigma_2 = 7 \)

Of course, we could evaluate this for different band passes.
Multiple Scales

• Corners of high-resolution images are often blurry or noisy at fine levels of detail

 ![Image of corner extraction](image)
 Corner indistinct at high resolution: no corner extracted

• Idea: run Harris corner detector on down-sampled versions of the image
 ▶ Extract corners, blur, decimate, repeat.

• Idea: repeatedly compute DoG, increasing both sigma1 and sigma2
 ▶ Look for successively lower frequency corners
 ▶ Better yet, once we’ve band-limited “enough”, we can decimate the image!
Image Pyramids

- Look for features on multiple scales
 - Just repeat image processing algorithm on successively lower-resolution images
 - Must produce lower-resolution images

- Avoiding aliasing requires low-pass filters
 - Ideal low-pass filter?
 - Don’t create new features when filtering
 - Avoid ringing!
 - Want a monotonic filter

Can be shown that the only admissible filter is a Gaussian low-pass filter. However, can’t achieve perfect frequency response... some tradeoffs necessary when building filter
Feature Tracking

• We often want to track (or match) features across two frames.
 ▶ Which corners in image A match those in image B?
 ▶ i.e., data association

• Can we use more information?
 ▶ Why not use the local appearance?
Image patch patching

- Consider the pixel patch around a feature
 - Sum of absolute/squared (SAD/SSE) differences/errors
- How robust is this to small alignment errors/rotations/changes in viewpoint/etc.?

These will probably match

These probably won’t
Invariances

• Our goal: detect distinctive features, maximizing repeatability
 ▶ Transform pixel patch into a space where a simple comparison (SAD/SSE) is effective.

• Scale invariance
 ▶ Robust to changes in distance

• Rotation invariance
 ▶ Robust to rotations of camera

• Affine invariance
 ▶ Robust to tilting of camera

• Brightness invariance
 ▶ Robust to minor changes in illumination
SIFT: Scale-Invariant Feature Transform

• David Lowe (Univ. British Columbia)

• Probably the single most commonly used tool in computer vision
 ▸ For better or for worse... often used “reflexively” even if it’s not a good choice!

• Watch out!
 ▸ Patented, commercial use restricted
SIFT

- Detect interest points
 - Image pyramid using DoG “corners”
 - Output: corners and scale (which level of the pyramid?)

- Output a “descriptor”
 - Consider pixel match around corner
 - Compute a histogram of the gradient directions
 - “Rotate” the histogram so that the dominant direction is first.
Sub-Octave Image Pyramids

Power-of-two pyramids are too coarse. Features can exist “in between”. Thus, use sub-octave pyramid.
Sub-Octave Image Pyramids

Power-of-two pyramids are too coarse. Features can exist “in between.” Thus, use sub-octave pyramid.
SIFT Descriptor

- Histogram of gradients gives good information about a pixel patch
 - But building just one histogram loses a lot of spatial information.
 - Idea: For a given interest point, compute a set of histograms; output each.
 - Shift histograms so dominant direction is first in histogram ==> rotational invariance.

- "Official" SIFT uses 16x16 pixel patches, 4x4 bins, 8 histogram buckets
- How many degrees of freedom in SIFT descriptor?
 - # bins * # histogram buckets = 4*4*8 = 128
Matching SIFT Descriptors

• Each SIFT feature:
 ‣ (x, y, scale) (ignore scale if you want scale invariance!)
 ‣ descriptor[128]

• Two descriptors can be compared using Euclidean distance…
 ‣ Small distances = similar descriptors
 ‣ What if same/similar feature appears more than once? nearest neighbor may not be good enough

• Common approach:
 ‣ Suppose best match for Ai is Bj (with dij).
 ‣ Suppose next best match for Ai is Bk (with dik).
 ‣ Require dij < alpha dik. (alpha typically 0.8).

• “Marriage” constraint: Ai and Bj match only if Bj is the best feature for Ai and vice versa.
Object recognition

- SIFT also used to build object recognition systems
Artificial Features
Applications

- Ground truthing
- Recognizing robots
- Commanding robots
- Education
 - Often useful to bypass open-ended perception problems
Related Work

- **ARToolkit**
 - Widely used
 - Primitive binarization scheme => high failure rate in unstructured environments
 - Weak coding system
 - Freely available

- **ARTag (Fiala, 2005)**
 - Seems to address many shortcomings in ARToolkit
 - Methods are not well-documented
 - Source code not available

- **Bokode (Mohan et al, 2009)**
- **Fourier codes (Sattar et al, 2007)**
- **Quick Response (QR) Tags**
AprilTags

- Robust detection
 - Not based on threshold-based binarization scheme
 - Works better in unstructured environments
 - Accurate localization
- Strong coding system
 - Low false positive rate
- Parameterizable
 - Pick your own tag family
Detection Approach
Coding System

• Based on lexicographic code
 ▷ Nearly optimal coding family

• Simple algorithm:

```python
codebook = {}
for i = 0 : max-codeword
    if (hamming_distance(i, codebook) > H))
        codebook = codebook U i
return codebook
```
Coding System

- But we need rotational invariance too!

```python
codebook = {}
for i = 0 : max-codeword
    if (hamming_distance(i, codebook) > H))
        codebook = codebook U { i, rot90(i), rot180(i), rot270(i) }
return codebook
```

- Note how code generation system can be easily modified to incorporate additional constraints.
Coding System: Optimality

<table>
<thead>
<tr>
<th>Code</th>
<th>Min. Ham.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARToolkit+ Simple</td>
<td>4</td>
</tr>
<tr>
<td>ARToolkit+ BCH</td>
<td>2</td>
</tr>
<tr>
<td>ARTag</td>
<td>4</td>
</tr>
<tr>
<td>36h10</td>
<td>10</td>
</tr>
</tbody>
</table>

Frequency

Hamming distance between codeword pairs

Proposed (36h10)
Tag Complexity

- Coding scheme can generate “perceptually weak” tags
 - All black tag--- likely to appear by chance in images
 - ARTag manually identified two “bad” tags and rules them out.

- How can we measure the “badness” of a tag automatically?

- Idea: How many rectangle drawing operations would it take to generate a tag?
 - Simple greedy search computes upper bound
Results: False Positives

- Use large corpus of images not containing AprilTags. Do we detect any?

- Which dataset should I use?
 - Should convince you that I haven’t “cooked” it
 - Used open “Label Me” dataset
 - Huge! (180,829 images)
 - Wide variety of topics, cameras, image quality
False Positives (Label Me)

AprilTag 36h11 outperforms ARTag: more encodable tags at lower false positive rate!
False positives versus complexity: Label Me

- Conclusion: Our tag complexity heuristic does help us reject naturally-occurring patterns
 - At \(c > 8 \), our tags are less likely to appear in real-world images than completely random tags!
Evaluation: Accuracy

• For reliable ground-truth, used synthetic ray tracing images
 ▸ Correct answer known exactly

• Two main factors in detection accuracy
 ▸ Distance from camera
 ▸ Angle to camera

• For each particular experiment, we want to know
 ▸ Accuracy
 ▸ Detection rate
Results: Accuracy

- AprilTag both more accurate and detects more cases!
AprilTag: Conclusions

- Very useful for robotics
 - Ground truthing
 - Commanding robots
 - Robots recognizing each other
 - Education

- Out-performs ARToolkit and ARTag
 - Better detection method
 - Better coding system

- Free and Open Source!

http://april.eecs.umich.edu