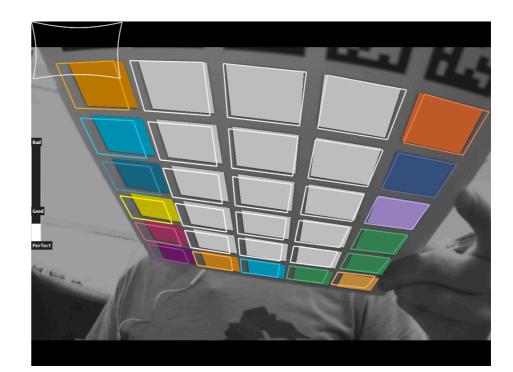
AprilCal: Assisted and Repeatable Camera Calibration



Andrew Richardson chardson@umich.edu

> Johannes Strom jhstrom@umich.edu

> > Edwin Olson ebolson@umich.edu

IROS 2013 Tokyo Monday, November 4th

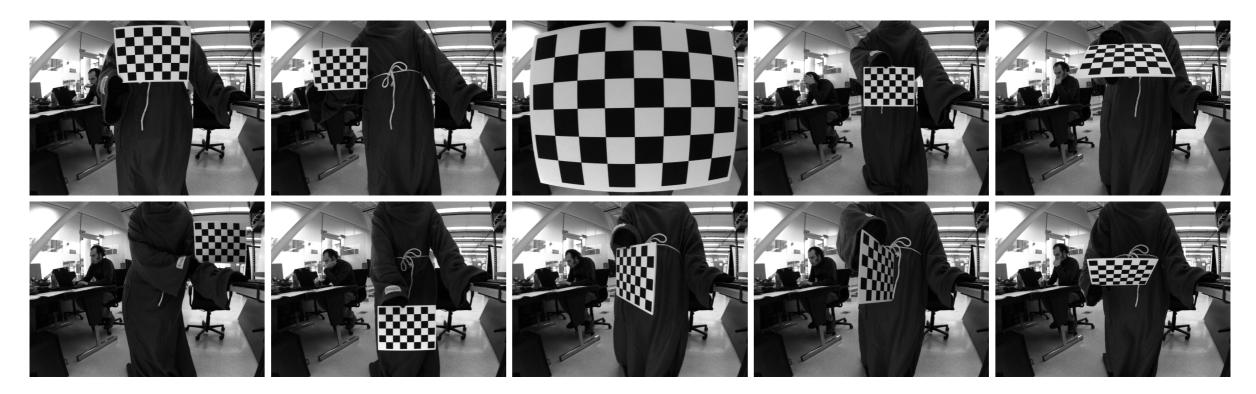
University of Michigan April Robotics Laboratory april.eecs.umich.edu

Why do we need a new calibrator?

Repeatability Calibration Target Design Evaluation Metrics Feedback Expert Calibration Knowledge

Repeatability

Why do we need a new calibrator?

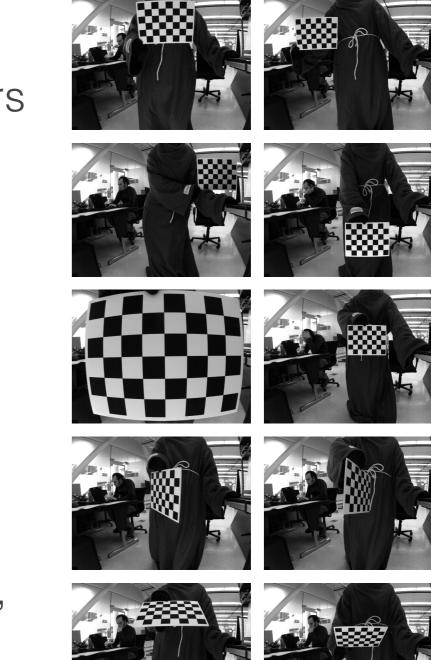


Real human study calibration images (OpenCV + 'web instructions')

- Calibration is a fundamental prerequisite
- Accuracy is crucial
- Not all users are calibration experts

Common Calibrator Issues

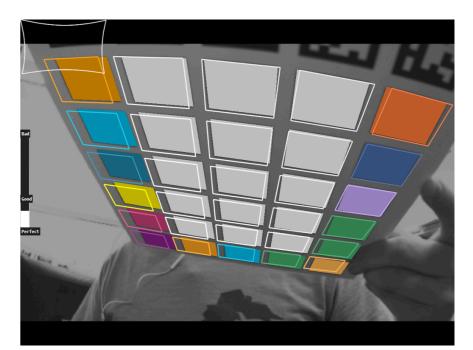
- Repeatability: Lacking for many users
- Calibration targets: Hard to get any constraints in distorted corners
- Evaluation metrics: Training error reflects only seen data, parameter uncertainties very unintuitive
- Little feedback: User has to guess when the calibration is done
- Experiment design: User must understand which images are 'good'



AprilCal

AprilCal

- Interactive, suggestion-based calibrator
- Realtime marker detection with fiducial markers (AprilTags)
- Intuitive worst-case error metric for generating suggestions and automatic completion



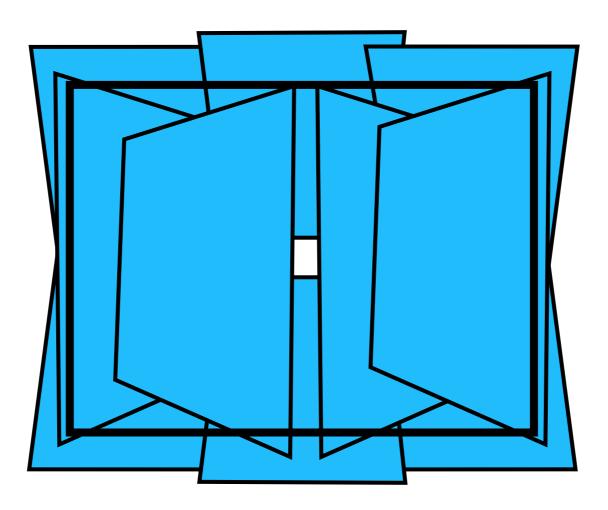
Two Biggest Takeaways

- 1. Suggestion-based calibration improves repeatability
- 2. New evaluation metric summarizes calibration uncertainty intuitively, can be used as stopping criterion
 - Suggestions not required to use this metric

How can we generate suggestions?

Generating Suggestions

- Live, adaptive suggestions (not choreography)
- Concepts:
 - Candidate poses: database of candidate target positions spread over working area



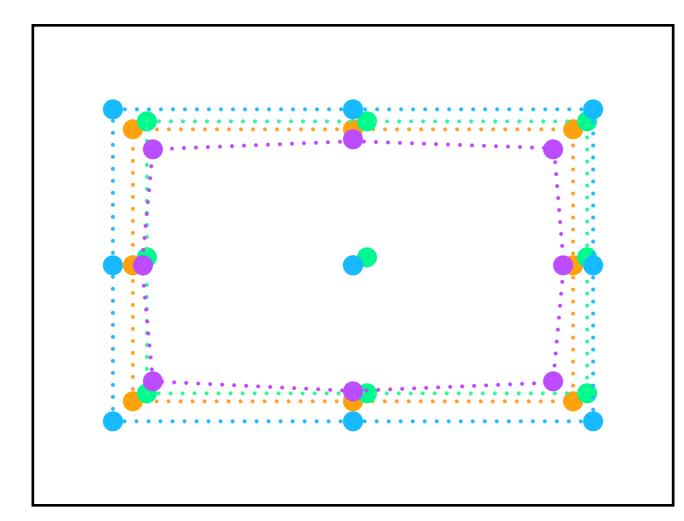
Generating Suggestions

- Live, adaptive suggestions (not choreography)
- Concepts:
 - Candidate poses: database of candidate target positions spread over working area
 - Frame scorer: algorithm to rank a candidate pose. Two scorers (Intrinsics variance and Max Expected Reprojection Error)
- Method:
 - For each candidate pose
 - Copy the calibration state
 - Observe target using mean model
 - Update model estimate
 - Evaluate frame score
 - Return pose with best score

Max Expected Reprojection Error (Max ERE)

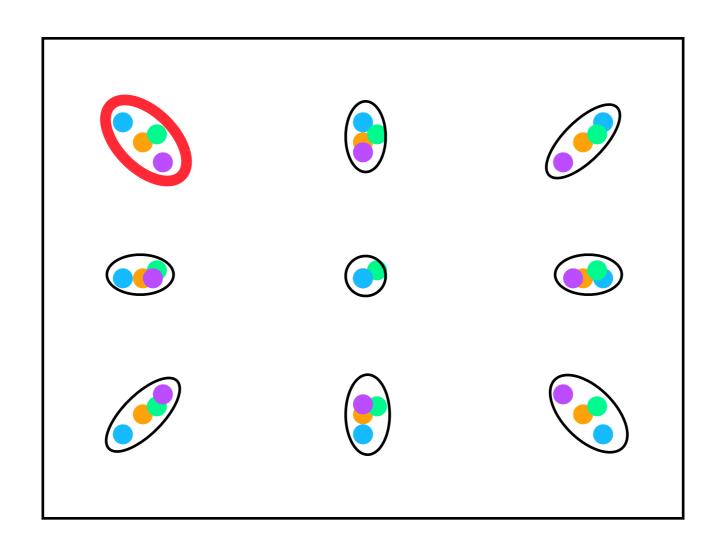
- Worst-case expected error across the image, computed empirically via sampling
- Algorithm:
 - Marginalize-out observations
 - For N trials:
 - Sample calibration parameters from distribution
 - Observe a set of control points
 - Update Local ERE for each control point
 - Compute Max ERE

Max ERE Animation



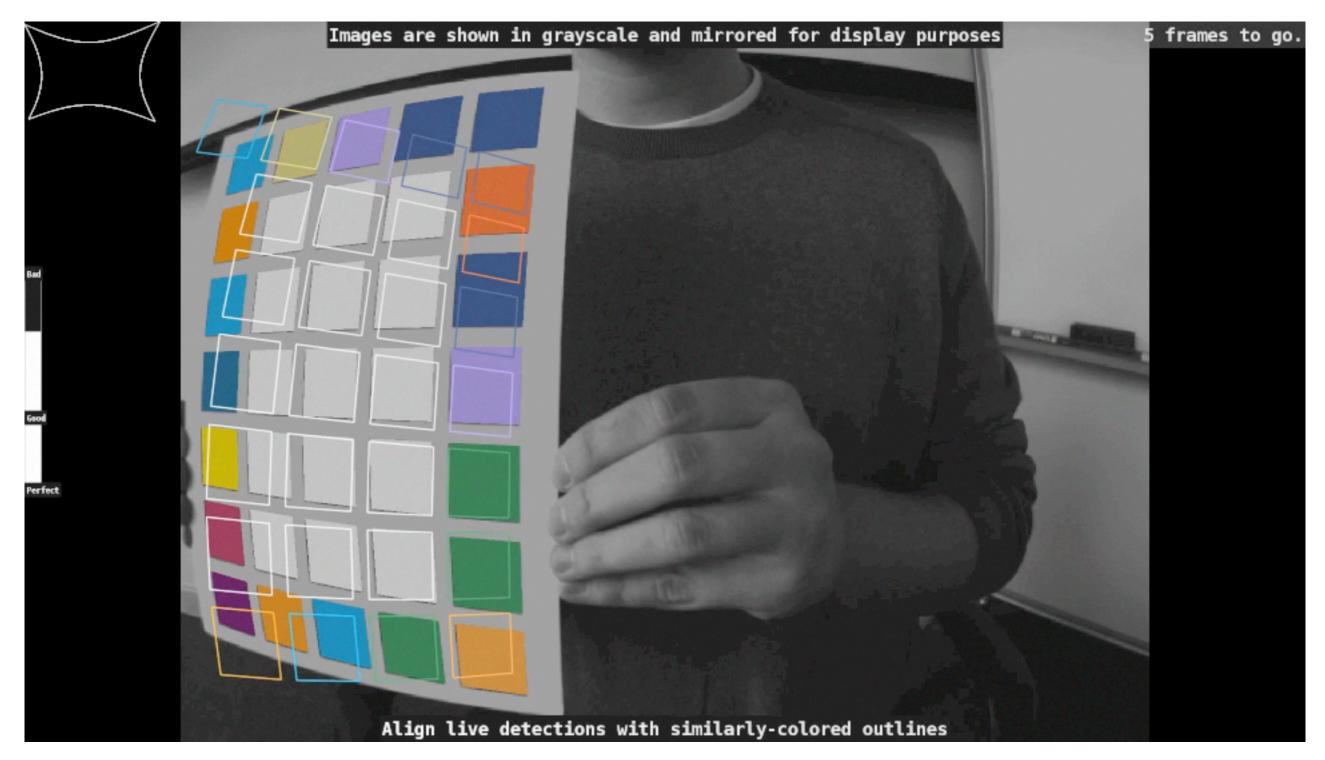
Reference: Mean Samples: Focal length Focal center Distortion

Max ERE Animation



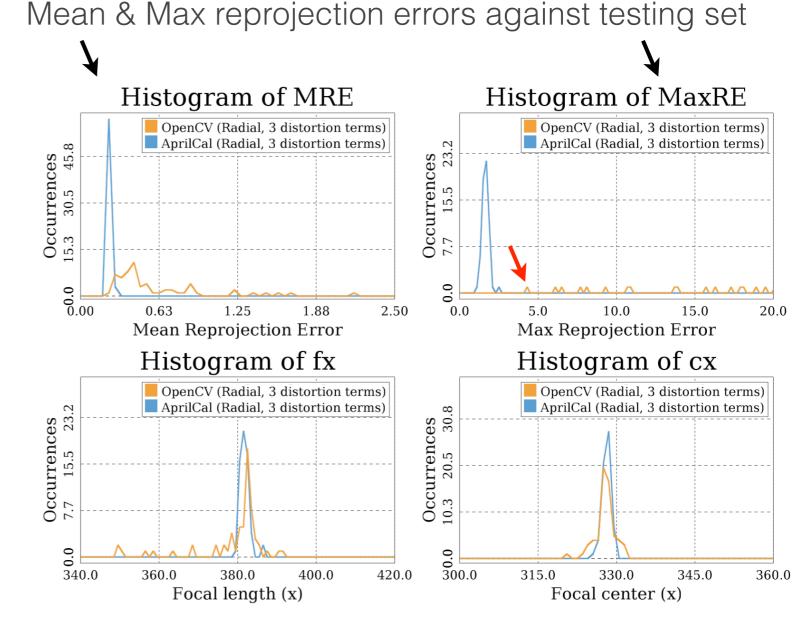
Reference: Mean Samples: Focal length Focal center Distortion Metrics: Local ERE Max ERE

Video



Evaluation Preview

- 16-participant user study vs. OpenCV
- Best OpenCV MaxRE worse than worst
 AprilCal MaxRE
- Very accurate, very repeatable

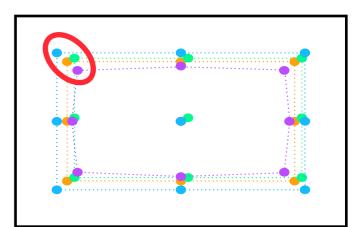


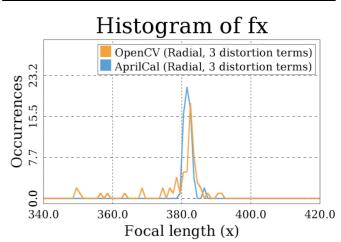
Thanks!

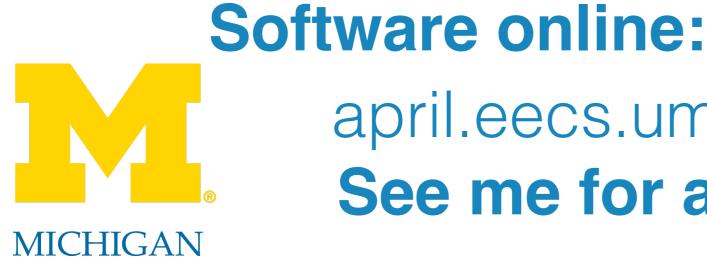
Andrew Richardson chardson@umich.edu

Johannes Strom jhstrom@umich.edu

Edwin Olson ebolson@umich.edu

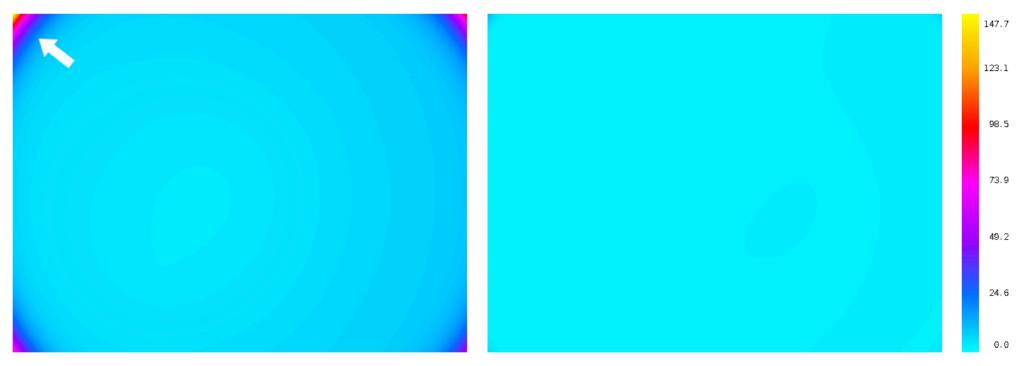






april.eecs.umich.edu See me for a demo!

Error Distribution



(a) OpenCV (Radial, 3 dist. terms) (b) AprilCal (Radial, 3 dist. terms)

