
Robust and Efficient Robotic Mapping
Summary of 2008 MIT PhD Thesis

Edwin Olson

1 Introduction

Mobile robots are dependent upon a model of the environment for many of their basic
functions. Locally accurate maps are critical to collision avoidance, while large-scale maps
(accurate both metrically and topologically) are necessary for efficient route planning. Solu-
tions to these problems have immediate and important applications to autonomous vehicles,
precision surveying, and domestic robots.

Building accurate maps can be cast as an optimization problem: find the map that is
most probable given the set of observations of the environment. However, the problem
rapidly becomes difficult when dealing with large maps or large numbers of observations.
Sensor noise and non-linearities make the problem even more difficult— especially when
using inexpensive (and therefore preferable) sensors.

This thesis describes an optimization algorithm that can rapidly estimate the maximum
likelihood map given a set of observations. The algorithm, which iteratively reduces map
error by considering a single observation at a time, scales well to large environments with
many observations. The approach is particularly robust to noise and non-linearities, quickly
escaping local minima that trap current methods. Both batch and online versions of the
algorithm are described.

In order to build a map, however, a robot must first be able to recognize places that it has
previously seen. Limitations in sensor processing algorithms, coupled with environmental
ambiguity, make this difficult. Incorrect place recognitions can rapidly lead to divergence
of the map. This thesis describes a place recognition algorithm that can robustly handle
ambiguous data.

We evaluate these algorithms on a number of challenging datasets and provide quan-
titative comparisons to other state-of-the-art methods, illustrating the advantages of our
methods.

2 Loop Closing

2.1 Problem Statement

Without the ability to recognize previously-visited places, the position uncertainty of a robot
increases without bound due to the ceaseless accumulation of dead-reckoning error. Place

1

recognitions serve as constraints on the motion of the robot, allowing a correction of its
dead-reckoning error. In the mapping context, place recognition is called “loop closing”: if
the robot drives in a loop and back to its starting position (and recognizes it), the robot
“closes” the loop. The quality and accuracy of the map is a function of the quantity and
quality of the loop closures.

Figure 1: Three laser scans from the CSAIL dataset. Some environments present rich alignment cues
(left: an elevator lobby). Incorrect matches arise from both spartan areas (middle: a corridor) and from
repetitive/cluttered areas (right: office cubicles).

Loop closing is difficult for several reasons. Algorithms must be robust to modest changes
in the environment caused by things like moving chairs or humans. Sensing limitations play
a critical role. The data produced by laser scanners, for example, is metrically accurate (see
Fig. 1), but it is often difficult to distinguish one room from another: indoor environments
tend to be composed of sets of straight walls and corners whose appearances are similar.

Camera-based systems, like those using the SIFT feature detector, provide a richer de-
scription of the environment (able to distinguish different posters on a wall, for example),
but are still susceptible to ambiguity. Different offices, for example, may contain the same
type of chair, and different outdoor environments contain the same types of street signs.
The length of these feature vectors has a major impact on both total memory usage and the
time required to index and search for similar features. Consequently, it is desirable to use
shorter descriptors (such as PCA-SIFT). Reducing the descriptor size generally increases the
error-rate of matching: matching algorithms that are robust to higher error rates are thus
very desirable.

In a map-building context, place recognition is known as “loop closing”, reflecting the
common case in which a robot travels around a large loop and returns to its original position
(thus “closing” the loop). However, any place recognition adds an edge to the pose graph,
creating a new cycle— the robot does not need to physically travel in a circle in order for a
loop closure to occur.

In robotic mapping applications, place recognition has generally been cast in terms of
explicitly associating landmarks with previously observed landmarks. This process is called
“data association”. Data association on one (or just a few) features at a time is highly
susceptible to errors, and data-association errors can cause catastrophic divergence of the
map.

In this thesis, we describe an approach that attempts to close loops by performing a
number of simple pose-to-pose matches. Given a number of naive matches (“hypotheses”),
our goal is to identify those that are correct. A set of these hypotheses has an interesting
property: the correct hypotheses all agree with each other (since there is only one true

2

2.2 Approach summary

configuration), whereas the the incorrect hypotheses tend to be incorrect in different ways
(and thus do not agree with each other). Our algorithm exploits this property by computing
the subset of hypotheses that is most self-consistent. In comparison to the exponential cost
of performing data association amongst N features, the cost of our approach is O(N2) in
the number of hypotheses. Our approach is similar to CCDA, except that our notion of
consistency is not limited to discrete boolean quantities.

Our approach does not require landmarks to be tracked, and thus does not require covari-
ance information about the landmarks or a data association algorithm. All that is required
is the ability to compute possible rigid-body transformations between two sensor scans. Our
approach can be viewed as a outlier-rejection step, extending previous pose-to-pose methods.

A major advantage of our proposed method is that it computes the “second-best” set
of mutually-consistent hypotheses as well. When using RANSAC or Joint Compatibility
Branch and Bound (JCBB), the second-best solution is generally a trivial variation on the
best solution: it is thus not very informative. In contrast, the second-best solution reported
by our new approach is orthogonal to the best solution– i.e., represents a substantially
different interpretation of the data. Our method allows the quality of these two solutions
to be quantitatively compared, allowing ambiguous solutions to be safely discarded. (If
the data can be equally well explained in two different ways, it is not safe to trust either
explanation.) In these ambiguous cases, our method will occasionally reject hypotheses that
are correct. Rejecting correct hypotheses has an impact on the quality of the final map
(since some information is lost), but it does not result in the sort of rapid divergence that
accepting an incorrect hypothesis can cause.

2.2 Approach summary

Given a set of N hypotheses, we compute the pair-wise consistency for each pair, yielding
an N × N “consistency” matrix A. We now wish to find the subset of hypotheses that is
maximally self-consistent. In other words, we wish to find a subset of hypotheses whose
pair-wise consistency is, on average, the greatest.

A hypothesis set can be viewed as a graph, with each hypothesis represented as a node.
The (weighted) adjacency matrix of this graph is the pair-wise consistency matrix A.

Our solution is based on our previous work, an algorithm called “Single Cluster Graph
Partitioning” (SCGP) . SCGP is a graph partitioning method that attempts to find a single
cluster of well-connected nodes, rejecting other nodes.

Let v be anN×1 indicator vector such that vi = 1 if the ith hypothesis should be accepted,
and vi = 0 otherwise. The sum of the compatibilities between the accepted hypotheses is
vTAv, and the number of accepted hypotheses is vTv. Thus, the average pair-wise consistency
λ(v) for a subset of hypotheses v is simply:

λ(v) =
vTAv

vTv
(1)

2.3 Results

We evaluated our loop-closing method on both vision-based and laser-based datasets. Our
vision data set is a 1.9km trajectory comprised of three complete loops in an outdoor urban

3

0 2 4 6 8 10
0

2

4

6

8

10
Input Points

Adjacency Matrix

100

300

200

0 2 4 6 8 10
0

2

4

6

8

10
Normalized−Cut Partitioning

Class A
Class B

0 2 4 6 8 10
0

2

4

6

8

10
Single Cluster Partitioning

Inliers
Outliers

Figure 2: SCGP versus Normalized Cuts. Given a set of (x, y) points, each representing a hypothesis
(top left), the goal is to identify the subset of hypotheses that forms the maximally self-consistent cluster.
The adjacency matrix is plotted such that the desired points have small indices: their higher-than-average
pair-wise consistency is clearly visible (top right). Our method, SCGP, produces the desired segmentation
(lower right). Normalized-Cuts, also based on spectral clustering, uses a different clustering metric which
results in a poor solutions on this type of problem.

environment. Our lidar-based data sets include standard map building benchmark datasets,
as well as several new real and synthetic datasets.

Loop closure algorithms are difficult to evaluate quantitatively: there are no standardized
datasets for this purpose. The benchmark datasets that we have processed are composed
of raw sensor data, but because sensor processing methods vary between researchers, the
resulting sets of hypotheses are not the same. Naturally, the quality and reliability of the
sensor processing (and hypothesis-generating) systems has huge impact on the difficulty of
the loop-closing problem.

We address this problem in two ways. First, we evaluate the performance of our system
repeatedly on the same dataset, with the quality of hypotheses purposefully degraded to
varying degrees. This allows us to determine the point (if any) at which our algorithm can
no longer produce useful output. Second, our hypothesis datasets have been made available
so that other researchers can perform a direct comparison to our method.

3 Graph Optimization

3.1 Problem Statement

In this section, we describe our approach to optimizing pose graphs. The nodes of a pose
graph represent particular places in the environment: these nodes can represent physical

4

3.1 Problem Statement

Figure 3: CSAIL loop closure close-up. Before loop-closing (left), laser scans show significant discrepan-
cies. After recognition (right), not only are the discrepancies resolved, but the topological relationships are
discovered.

Outliers

Inliers

Figure 4: Filtered loop-closure hypotheses. Twelve representative hypotheses from a hypothesis set of size
45 are displayed. The outliers (top) and inliers (bottom) were automatically labelled using Single-Cluster
Graph Partitioning. The alignment errors (derived from the posterior) are shown as gray lines: these errors
are apparent in the outlier set.

things (such as landmarks that have been sensed by the robot) or can represent the current
or previous position of the robot. The edges of a pose graph relate the positions of two nodes
and describe a cost as a function of the deviation from their preferred configuration. Pose
graph optimization is the task of computing positions for each node such that the edges have
minimum cost.

This optimization problem is critically important: the lowest-cost solution represents
the best (maximum likelihood) map of the world. Whether a robot is avoiding obstacles,
planning routes to some goal, or is explicitly trying to map an environment, the robot is
dependent upon the fast and reliable optimization of the pose graph.

However, pose graph optimization is difficult for three central reasons:

5

Figure 5: Adjacency graph for a set of 45 hypotheses. Each node represents a pose-to-pose hypothesis: the
inlier set is indicated by yellow nodes (towards the bottom), with outliers in blue. Brightly-colored edges
indicate greater pair-wise compatibility. The distance between two nodes is roughly proportional to the joint
probability of the two hypotheses.

• The state space is large. The size of the state vector is proportional to the number of
nodes in the graph; a problem with thousands of state elements is small.

• The constraints are non-linear. As a result, the cost surface contains optimization
hazards like local minima and valleys.

• The initial estimate is often poor. Most robots have meager dead-reckoning accuracy—
as a result, the initial configuration of the pose graph can be far away from the best
configuration.

This thesis describes a new optimization method that is both fast and robust. It can
rapidly find the best configuration of nodes, and is robust to optimization hazards that trap
existing methods. Our method also has low memory requirements and is relatively easy to
implement.

Our method adapts Stochastic Gradient Descent (SGD) , commonly used in training
artificial neural networks, to the problem of pose graph optimization. SGD has not previously
been applied to map optimization, but has been used for localization.

We use a novel state-space representation, solving for the global-relative motions between
poses, rather than solving for the absolute positions of the nodes. This representation allows
faster reductions of error at each iteration, while a specialized data structure allows each
iteration to be computed very quickly.

We demonstrate that our approach is not only very fast (competitive with or faster
than other state-of-the-art methods), but is also significantly more robust: it finds correct
solutions in cases that other methods get stuck in local minima.

The basic version of the algorithm operates in “batch” mode; we also describe an incre-
mental version that is well-suited to online operation. We introduce the idea of spatially-
varying learning rates as a way of controlling the impact of new loop closures. It allows
stable parts of the graph to continually refine their solution while simultaneously allowing
volatile parts of the graph to quickly incorporate new information.

6

3.2 Approach Summary

3.2 Approach Summary

Our approach is motivated by a simple intuition. Consider a pose graph constructed by a
robot as it travels around a large loop. The trajectory of the robot is periodically sampled,
with each sample point represented by a pose (a “node”) and connected to its predecessor
by an estimate of the robot’s motion (an “edge”). Note that every edge has an uncertainty
associated with it, so it is possible to compute its χ2 error.

Suppose the robot returns to its starting place and recognizes it; this adds an additional
edge between the first and last pose, creating a cycle (see Fig. 6). This edge is commonly
called a “loop closure”, since it closes a large loop of nodes.

Figure 6: Map Optimization Intuition. The χ2 error of a graph with a poorly-satisfied constraint (left, red
arrow) can be reduced by distributing small adjustments around the nodes in the loop (right).

The choice of state representation has a large impact on the performance of our opti-
mization algorithm. Picking a state space in which the state variables echo the structure of
the underlying random process results in significant performance improvements.

We propose a new state space representation that approximates the cumulative motion
of the robot, but eliminates the projective effects of purely relative representations. We
call it the “global incremental” state space representation, xincr : the state vector contains
the difference between the successive global positions. In the absence of rotations (θi = 0),
it is identical to the relative state space. With this state space representation, there are
no projective effects (the position of a node is a simple sum of global motions, not the
composition of rigid-body transformations), and so updates are more stable.

Consider the χ2 error of a single constraint i, evaluated at the current state estimate plus
d:

χ2
i = (Jid− ri)

TΣ−1(Jid− ri) (2)

The gradient is:

∂χ2
i

∂d
= 2JT

i Σ
−1
i Jd− 2JT

i Σ
−1
i ri (3)

Evaluated at the current state estimate, where d = 0, gives just:

∂χ2
i

∂d
= −2JT

i Σ
−1
i ri (4)

At time step t, let the learning rate λ be 1/t. The gradient descent step moves in the
opposite direction of the gradient, and can be written as:

d = λ2JT
i Σ

−1
i ri (5)

7

Algorithm 1 Stochastic Gradient Descent Algorithm

λ = 1/3
while not converged do
select a constraint i at random
compute Ji and ri at the current state estimate.
d = 2λJT

i Σ
−1
i ri

x = x+ d
λ = λ/(λ+ 1)

end while

At each iteration, Stochastic Gradient Descent (see Alg. 1) reduces the error of a single
constraint (often unintentionally increasing the error of other constraints). In early itera-
tions, it will take large steps in order to reduce the residual, which causes the state estimate
to jump around the state space. This behavior allows SGD to escape local minima. Intu-
itively, while many constraints may be satisfied at a local minimum, there are generally one
or more constraints that remain poorly satisfied. These ill-satisfied constraints will cause a
comparatively large jump away from that local minimum. Conversely, near the global mini-
mum, constraints tend to be better satisfied: this means smaller jumps. In short, ill-satisfied
constraints cause the state estimate to jump around, but the state estimate tends to “stick”
near the global minimum once it is found.

3.3 Online/Incremental Approach

In order to extend our method to the online case, we allow different parts of the graph to
have different learning rates. When a new constraint is added to the graph, the learning rate
can then be selectively increased. This allows unaffected parts of the graph to retain their
low-error configurations while volatile parts of the graph are allowed to rapidly find a new
equilibrium.

Specifically, instead of a single global learning rate λ, we will give each node i its own
learning rate Λi. These learning rates represent the volatility of each node in the graph. The
key contribution is a set of rules describing how these learning rates should be adjusted in
order to accommodate new information. The batch algorithm can be described as a special
case of the incremental algorithm: in the absence of new observations, the learning rates Λi

will all equal the learning rate λ of the batch algorithm.

3.4 Results

P5K20K is a synthetically generated dataset with 5000 nodes and 20000 edges. This gives it
a fairly high average node degree, which, with the fairly large size of the state vector, makes
it is a challenging optimization problem (see Fig. 7 and Fig. ??).

The Cholesky factorization is fairly slow on this problem due to the fairly high average
node degree and relatively large sensing range. The result is that the Cholesky factor is an
order of magnitude more dense than on the CSW dataset: the information matrix has a
similar density (0.086%), but the Cholesky factor has a density of 1.96% (versus 0.166% on

8

3.4 Results

Ground Truth Initial Configuration SGD Solution (2 s)

Cholesky t = 34 s Cholesky t = 63 s Cholesky t = 91 s

Figure 7: P5K20K Graphs. The true configuration (top left) and an odometry-derived initial configuration
(top middle) are shown. The configuration resulting from three successive iterations of Cholesky Decompo-
sition are shown (bottom, left to right). After 91 seconds, its solution is comparable to our solution (top
right), which was obtained in 2 seconds.

the CSW dataset).

Figure 8: Incremental Processing of Freiburg dataset. The open-loop graph (top-left) is incrementally
optimized; the state of the graph is shown at two intermediate configurations and the final configuration.
The colors used in the maps indicate the learning rates Λi, which are also plotted on the bottom as a function
of pose number; earlier parts of the graph are clearly insulated from learning rate increases affecting poses
closer to the robot. When closing large loops (middle-left figure), the learning rate is increased over a larger
portion of the graph.

Compared to other algorithms, our proposed method is substantially more robust to

9

initialization error. Specifically, our method can find the global minimum even when other
methods get stuck in local minima.

This robustness can be measured. The likelihood of an algorithm getting stuck in a local
minimum increases with the noise of the observations in the graph: noisy observations are
more likely to cause the algorithm to erroneously step in a sub-optimal direction. We can
test the robustness of an optimization algorithm by generating a large number of synthetic
datasets with varying degrees of noise, and counting the number of graphs that each al-
gorithm successfully solves. We detect failure by comparing the normalized χ2 to 1.0, its
expected value at the global minimum: convergence to significantly larger values indicates a
local minimum.

2 4 6 8 10 12 14 16

x 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Odometry Variance

F
ra

ct
io

n
of

 p
ro

bl
em

s
so

lv
ed

 c
or

re
ct

ly

Cholesky
SGD

Robustness

Figure 9: Convergence Robustness. On problems with significant noise and poor initial estimates, our
algorithm finds the global minimum much more often than a Cholesky-Decomposition based method.

4 Conclusion

This thesis has presented new algorithms methods for both loop closing and map optimiza-
tion. We show how relatively easy-to-generate loop-closure hypotheses can be filtered so that
only correct loop-closure hypotheses remain. Our approach is based on the spectral proper-
ties of the pair-wise consistency matrix. A key feature of our approach is that the ratio of the
first and second eigenvalues can be interpreted as a confidence metric, allowing perceptually
ambiguous sensor data to be detected. In this thesis, we simply reject ambiguous hypothesis
sets; a natural direction for future work would be to resolve ambiguous hypothesis sets by
collecting additional data.

The second major contribution of this thesis is a new family of map optimization al-
gorithms. These algorithms are based on stochastic gradient descent, which improves the
state estimate by considering a single constraint at a time. Stochastic Gradient Descent has
previously used in machine learning (particularly in the training of neural networks), but we
showed how the method could be adapted to the map optimization problem. Our resulting
algorithm rapidly explores the state space, giving it two key advantages: it escapes local
minima that trap existing methods, and it can rapidly find solutions near the global mini-
mum. This thesis describes both a batch and online version of the algorithm and evaluates
the algorithms on a variety of real and synthetic data sets.

10

	1 Introduction
	2 Loop Closing
	2.1 Problem Statement
	2.2 Approach summary
	2.3 Results

	3 Graph Optimization
	3.1 Problem Statement
	3.2 Approach Summary
	3.3 Online/Incremental Approach
	3.4 Results

	4 Conclusion

