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Abstract— In dynamic environments crowded with people,
robot motion planning becomes difficult due to the complex
and tightly-coupled interactions between agents. Trajectory
planning methods, supported by models of typical human
behavior and personal space, often produce reasonable be-
havior. However, they do not account for the future closed-
loop interactions of other agents with the trajectory being
constructed. As a consequence, the trajectories are unable to
anticipate cooperative interactions (such as a human yielding),
or adverse interactions (such as the robot blocking the way).

In this paper, we propose a new method for navigation
amongst pedestrians in which the trajectory of the robot is
not explicitly planned, but instead, a planning process selects
one of a set of closed-loop behaviors whose utility can be
predicted through forward simulation. In particular, we extend
Multi-Policy Decision Making (MPDM) [1] to this domain using
the closed-loop behaviors Go-Solo, Follow-other, and Stop. By
dynamically switching between these policies, we show that
we can improve the performance of the robot as measured
by utility functions that reward task completion and penalize
inconvenience to other agents. Our evaluation includes extensive
results in simulation and real-world experiments.

I. INTRODUCTION

Maneuvering in dynamic social environments is chal-

lenging due to uncertainty associated with estimating and

predicting future scenarios arising from the complex and

tightly-coupled interactions between people. Sensor noise,

action execution uncertainty, tracking data association errors,

etc. make this problem harder.

Trajectory planning methods such as [2], [3] use models

of human behavior to propagate the state of the environment,

but may fail to account for the closed-loop coupled interac-

tions of agents.

A robot needs to exhibit a wide range of emergent

behaviors to successfully deal with the various situations

that are likely to arise in social environments. For instance,

navigating in a hallway with freely moving people is different

than a situation where people crowd around a door to exit a

room. Several navigation algorithms [2]–[16] that calculate

a single navigation solution may find it hard to deal with all

these scenarios. This inflexibility may result in undesirable

solutions under challenging configurations.

In this work, we propose a novel approach to motion

planning amongst people. Instead of computing a trajectory

directly or relying on a single algorithm, we evaluate a set

of closed-loop policies by predicting their utilities through

forward simulation that captures the coupled interactions

between the agents in the environment.
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Fig. 1. Our approach implemented and tested using the MAGIC [17] robot
platform. We show that our algorithm is able to navigate successfully on
an indoor environment amongst people. MPDM allows the robot to choose
between policies. In this case, the robot decides to Follow the person in
front rather than try to overtake him.

We extend MPDM [1] to navigate in dynamic, unstruc-

tured environments where the dynamic agents (humans) can

instantaneously stop or change direction without signaling.

To achieve this, we use different and complementary policies

than those considered by Cunningham et al. [1]: Go-Solo,

Follow-other and Stop. In order for the robot’s emergent

behavior to be socially acceptable, each policy’s utility is

estimated trading-off the distance traveled towards the goal

(Progress) with the potential disturbance caused to fellow

agents (Force).

Dynamically switching between the candidate policies

allows the robot to adapt to different situations. For instance,

the best policy might be to Stop if the robot’s estimation

uncertainty is large. Similarly, the robot may choose to

Follow a person through a cluttered environment. This may

make the robot slower, but allows it to get a clearer path

since humans typically move more effectively in crowds, as

depicted in Fig. 1.

Due to the low computational requirements of evaluating

our proposed set of policies, the robot can re-plan frequently,

which helps reduce the impact of uncertainty. We show the

benefits of switching between multiple policies in terms of

navigation performance, quantified by metrics for progress

made and inconvenience to fellow agents. We demonstrate

the robustness of MPDM to measurement uncertainty and

study the effect of the conservatism of the state estimator

through simulation experiments (Sec. VI). Finally, we test

the MPDM on a real environment and evaluate the results

(Sec. VII).



II. RELATED WORK

In a simulated environment, van den Berg et al. [18]

proposed a multi-agent navigation technique using velocity

obstacles that guarantees a collision-free solution assuming

a fully-observable world. From the computer graphics com-

munity, Guy et al. [19] extended this work using finite-time

velocity obstacles to provide a locally collision-free solution

that was less conservative as compared to [18]. However, the

main drawback of these methods is that they are sensitive to

imperfect state estimates and make strong assumptions that

may not hold in the real world.

Several approaches attempt to navigate in social environ-

ments by traversing a Potential Field (PF) [20] generated

by a set of pedestrians [4]–[6]. Huang et al. [9] used

visual information to build a PF to navigate. In the field of

neuroscience, Helbing and Molnár [21] proposed the Social

Force Model, a kind of PF approach that describes the

interactions between pedestrians in motion.

Unfortunately, PF approaches have some limitations, such

as local minima or oscillation under certain configurations

[22]. These limitations can be overcome to a certain degree

by using a global information plan to avoid local minima

[23]. We use this same idea in our method by assuming

that a global planner provides reachable goals, i.e., there is a

straight line connection to those positions ensuring feasibility

in the absence of other agents.

Inverse Reinforcement Learning-based approaches [10]–

[13] can provide good solutions by predicting social envi-

ronments and planning through them. However, their effec-

tiveness is limited by the training scenarios considered which

might not be a representative set of the diverse situations that

may arise in the real world.

An alternative approach looks for a pedestrian leader to

follow, thus delegating the responsibility of finding a path to

the leader, such as the works of [7], [14], [15]. In this work,

Follow becomes one of the policies that the robot can choose

to execute as an alternate policy to navigating.

Some approaches [2], [8], [16] plan over the predicted

trajectories of other agents. However predicting the behavior

of pedestrians is challenging and the underlying planner must

be robust to prediction errors.

POMDPs provide a principled approach to deal with

uncertainty, but they quickly become intractable. Foka et

al. [3] used POMDPs for robot navigation in museums.

Cunningham et al. [1] show that, by introducing a number of

approximations (in particular, constraining the policy to be

one of a finite set of known policies), that the POMDP can

be solved using MPDM. In their original paper, they use a

small set of lane-changing policies; in this work, we explore

an indoor setting in which the number and complexity of

candidate policies is much higher.

III. PROBLEM FORMULATION

Our model of the environment consists of static obstacles

(e.g. walls or doors) and a set of freely moving dynamic

agents, assumed to be people.

The robot maintains estimates of the states of observable

agents. The state xi ∈ Xi for agent i (including the robot)

consists of its position pi, velocity vi and a goal point gi.

xi = [ pi, vi, gi]
⊤, (1)

where each of pi, vi and gi are two-dimensional vectors. The

motion of agents is modeled according to a simple dynamics

model in which acceleration, integrated over time, results in

a velocity. The force, and hence the acceleration, is computed

using a potential field method that incorporates the effects

of obstacles and a goal point.

Let N be the number of agents including the robot. The

joint state space of the system is X = X1 ×X2 × . . .×XN .

The collective state x(t) ∈ X includes the robot state plus

all the agents visible to the robot at time t.
Our observation model P (z|x) is assumed to be Marko-

vian, where the joint observations z are the pedestrians’

positions. In Sec. V we will discuss the impact that the

estimator’s posterior distribution P (x|z) has on our approach.

For each pedestrian, the goal gi is not directly observable

through z. It is assumed to be one of a small set of salient

points and is estimated using a naive Bayes Classifier. For

the robot, the goal gr is provided by a higher level planner.

The agent dynamics are defined by the following differ-

ential constraints:

ẋi = [vi, ai, 0]⊤, (2)

The action ai ∈ Ai corresponds to the acceleration governing

the system dynamics and is determined by the policy ξi
followed by the agent (Sec. IV).

The transition function maps a given state xi and an action

ai to a new state T : Xi×Ai 7→ Xi. Thus, the corresponding

transition equation is expressed as

T (xi, ai) = xi(t+∆t) = xi(t) +

∫ t+∆t

t

ẋi(τ, ai)dτ. (3)

The system is constrained to a maximum velocity |v|max

for each agent.

IV. NAVIGATION POLICIES

We approach this problem by reasoning over a discrete set

of high-level closed-loop policies.

ξ = {Go-Solo,Followj, Stop}, (4)

where Followj refers to the policy of following agent j. A

robot in an environment with 10 observable agents has a total

of 12 candidate policies, much greater than the 3 policies

considered by Cunningham et al. [1].

Each policy maps a joint state of the system to an action

via a potential field ξi ∈ ξ : X 7→ Ai.

A. Go-Solo Policy

An agent executing the Go-Solo policy treats all other

agents as obstacles and uses a potential field based on the

Social Force Model (SFM) [6], [21] to guide it towards its

goal.



Let epi→gi
be the unit vector towards the goal from the

agent i. The attractive force acting on the agent is given by:

f attr
i (x) = kgsei→gi

. (5)

We model the interactions with other agents in the scene

based on the SFM :

f int
i,j (x) = ape

−di,j/bp · ej→i, (6)

where {ap, bp} are the SFM parameters for people, ej→i is

the unit vector from j to i and di,j is the distance between

them scaled by an anisotropic factor as in [6] .

Similarly, each obstacle o ∈ O in the neighborhood of the

agent exerts a repulsive force f obs
i,o (x) on agent i according

to different SFM parameters {ao, bo},

f obs
i,o (x) = aoe

−di,o/bo · eo→i. (7)

The resultant force is a summation of all the forces

described above:

fi(x) = f attr
i (x) +

∑

j 6=i

f int
i,j +

∑

o∈O

f obs
i,o (8)

The action governing the system propagation (2) is calcu-

lated as ai = fi (without loss of generality, we assume unit

mass). We assume that all agents besides the robot always

use this Go-Solo policy.

B. Follow Policy

In addition to the Go-Solo policy, the robot can use the

Follow policy to deal with certain situations. Our intuition

is that in a crowd, the robot may choose to Follow another

person sacrificing speed but delegating the task of finding a

path to a human. Following could also be more suitable than

overtaking a person in a cluttered scenario as it allows the

robot to Progress towards its goal without disturbing other

agents (low Force). We propose a reactive Follow policy,

making minor modifications to the Go-Solo policy.

According to the Follow policy, the robot r chooses to

follow another agent, the leader, denoted by l. We can

apply the same procedure explained in Sec. IV-A with the

modification that the robot is attracted to the leader rather

than the goal. Let epr→pl
be the unit vector from the robot’s

position to the leader’s position. The attractive force

f attr
r (x) = kfepr→pl

, (9)

steers the robot trajectory towards the leader. The other

agents and obstacles continue to repel the robot as described

in (8).

C. Stop Policy

The last of the policies available to the robot is the

Stop policy, where the robot decelerates until it comes to

a complete stop, according to the following force

fr(x) = −fmaxevr , (10)

where evr is the unit vector in the direction of the robot’s

velocity.

In the following section, we will describe the procedure to

choose between these three policies, and the resultant force

fi(x, ξ) will be expressed as a function of the policy ξ.

Algorithm 1 MPDM(x, z, tH , Ns)

1: for ξ ∈ ξ do

2: for s = 1 . . .Ns do

3: xs ∼ P (x|z) // Sampling over the posterior.

4: C(xs, ξ) = simulate forward(xs, ξ, tH)
5: end for

6: end for

7: return ξ∗ = argminξ(Ex{C(x, ξ)})

Algorithm 2 simulate forward(x, ξ, tH )

1: X̂ = {}
2: for t′ = t, t+∆t, . . . , tH do

3: ˙̂xr(t
′) = fr(x(t

′), ξ) // Propagate robot

4: x̂r(t
′ +∆t) = x̂r(t

′) +
∫

∆t
˙̂xr(τ)dτ

5: for i ∈ 1 . . . r − 1, r + 1 . . .N do

6: ˙̂xi(t
′) = fi(x(t

′),Go-Solo) // Propagate people

7: x̂i(t
′ +∆t) = x̂i(t

′) +
∫

∆t
˙̂xi(τ)dτ

8: end for

9: x̂(t′ +∆t) = {x1(t
′ +∆t), . . . , xN (t′ +∆t)}

10: X̂.append(x̂(t′ +∆t))
11: end for

12: C = −αPG(X̂) + F (X̂) // Calculate cost

13: return C

V. MULTI-POLICY DECISION MAKING

Decision making is constantly recalculated in a Receding

Horizon fashion. MPDM chooses the policy ξ ∈ ξ that

optimizes the following objective function (Alg. 1):

ξ∗ = argmin
ξ

Ex{C(x, ξ)}. (11)

The cost C(x, ξ) is associated with the current joint state

x upon choosing policy ξ. In order to obtain a cost function,

for each agent, we predict a trajectory X̂i(ξ) governed by the

particular policy ξ executed by the agent:

X̂i(ξ) = {x̂i(t+∆t, ξ), . . . , x̂i(tH−∆t, ξ), x̂i(tH , ξ)}. (12)

We forward simulate the joint state x until a time horizon

tH by applying (3) iteratively and simultaneously for each

agent, as can be seen in Alg. 2. We obtain a propagation of

the agents’ trajectories as well as the robot’s X̂(ξ), which

are especially interesting since the trajectories react to their

interactions with the robot’s proposed plan, and vice-versa.

A. The Cost Function

Our cost function consists of two different components:

Force which captures the potential disturbance that the robot

causes in the environment and Progress which indicates

progress made towards the goal.

Force: We use the maximum repulsive force (6) exerted

on another agent (except the leader, if any) as a proxy for

the potential disturbance caused to the environment by the

robot.



Fig. 2. The graphical interface during a real-world experiment. We use a
grid-map encoding static obstacles as red/gray cells, free spaces as black
cells, and unknown regions as yellow cells. The robot (blue triangle) uses
10 samples to estimate future trajectories (green lines) for tracked agents
(green circles), and calculates expected scores based on these samples. The
yellow lines denote the past trajectories of the tracked agents.

F (X̂(ξ)) =

{

∑tH
t′=t maxj 6=i ‖f

int
r,j (x̂(t′, ξ))‖ ξr 6= Follow

∑tH
t′=t maxj 6=i,l ‖f int

r,j (x̂(t′, ξ))‖ ξr = Follow

(13)

Progress: We encourage the robot for the distance-made-

good during the planning horizon.

PG(X̂(ξ)) =
(

x̂i(tH , ξ)− xr(t)
)

· er→gr
, (14)

where er→gr
is the unit vector from the current position of

r to the goal gr.

The resultant cost function is a linear combination of both

C(x, ξ) = −αPG(x, ξ) + F (x, ξ), (15)

where alpha is a weighting factor.

Obtaining a closed form of the cost expectation, as ex-

pressed in (11), is believed to be impossible. For this reason,

we use a sampling technique to approximate the expected

cost:

Ex{C(x, ξ)} ∼
∑

s∈S

wsC(xs, ξ), (16)

where S is the set of samples drawn from the distribution

P (x|z). These samples seed the forward propagation of the

joint state, resulting in a set of different future trajectories.

Thus, the robot’s behavior reflects not only the mean state

estimates of the other agents, but also the uncertainty asso-

ciated with those estimates.

Estimation uncertainty and measurement noise affect the

quality of sampled future trajectories and thereby system

performance. In Sec. VI we will show that the flexibility

of choosing between multiple policies makes our approach

robust to measurement noise, and err on the side of caution.

Fig. 2 shows a scenario where the robot (in blue) chooses

to follow the agent ahead of it after predicting multiple

trajectories of visible agents for each candidate policy and

approximating the expected cost associated with each policy.

VI. SIMULATIONS

We simulate two indoor domains, freely traversed by a set

of agents while the robot tries to reach a goal. One simulation

Fig. 3. The simulated indoor domains chosen to study our approach. Left:
The hallway domain where 15 agents are let loose with the robot and they
patrol the hallway while the robot tries to reach its destination. Right: The
doorway domain where 15 agents whose goal is reaching the bottom right
of the map through the door. These two domains present the robot with a
set of diverse, but realistic indoor situations (crossing agents in a hallway,
queuing and dense crowding near a doorway).

‘epoch’ consists of a random initialization of agent states

followed by a 5 minute simulated run at a granularity

∆t = 0.1s. The number of samples used to approximate the

expected cost according to (16) Ns = 50. We use the Intel

i7 processor and 8GB RAM for our simulator and LCM [24]

for inter-process communication.

Every 333ms (policy election cycle), MPDM chooses a

policy ξ. Although the policy election is slow, the robot is

responsive as the policies themselves run at over 100Hz.

We assume that the position of the robot, agents, the goal

point, and obstacles are known in some local coordinate

system. However, the accuracy of motion predictions is

improved by knowing more about the structure of the build-

ing since the position of walls and obstacles can influence

the behavior of other agents over the 3 second planning

horizon. Our implementation achieves these through a global

localization system with a known map, but our approach

could be applied more generally.

A. Domains

The hallway domain (Fig. 3-Left) is modeled on a 3m×
25m hallway at the University of Michigan.

The doorway domain (Fig. 3-Right) consists of a room

with a door at the corner of the room leading into a hallway.

The robot and all agents try to reach the hallway through the

door.

Based on the observed empirical distributions over some

runs (Fig. 4-Left), we set α = 15 so that Force and Progress

have similar impact on the cost function.

The maximum permitted acceleration is 3m/s2 while the

maximum speed |v|max is set to 0.8m/s. MPDM is carried

out at 3Hz to match the frequency of the sensing pipeline for

state estimation in the real-world experiment. The planning

horizon is 3s into the future.

B. Evaluation Metrics

Evaluating navigation behavior objectively is a challenging

task and unfortunately, there are no standard metrics. We

propose three metrics that quantify different aspects of the

emergent navigation behavior of the robot.

1) Progress (PG) - measures distance made good, as

presented in (14).

2) Force (F) - penalizes close encounters with other

agents, calculated at each time step according to (13).
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Fig. 4. Qualitative evaluation of some simulation runs comparing MPDM and the exclusive use of Go-Solo. Right: Temporal evolution in the hallway
domain where first the robot ran a fixed Go-Solo policy for 50s followed by MPDM for the next 50s. The horizontal red lines indicate the average values
for the trajectory. The Go-Solo performance makes a lot of Progress but incurs high Force and Blame, manifesting as undesired peaks. In the next 50s, the
MPDM Force curve is almost flat, meaning that nearby interactions are reduced drastically and Blame is reduced significantly. Left: Distributions of the
evaluation metrics - Force, Blame and Progress respectively over 3k seconds. Ideal behavior would give rise to high Progress and low Force. The higher
valued modes for Force denote undesirable behavior (close encounters), which MPDM is able to avoid.

3) Blame (B) - penalizes velocity at the time of close

encounters which is not captured by Force. Let p∗
ij(t)

be the point on the line segment joining pi(t) + viτ
and pi(t) that is closest to pj(t). Then,

Bi(t) = max
j

Φ(||p∗
ij(t)− pj(t)||), (17)

where Φ is a sigmoid function and τ is set to 0.5s
in our experiments. We further motivate this metric in

Sec. VI-C.

C. Empirical Validation

To empirically validate our algorithm, we run the MPDM

on both domains, assuming perfect observations. Fig. 4-Right

shows the performance of the MPDM as compared to using

the Go-Solo policy exclusively. During the initial 50s (Go-

Solo) the robot makes a lot of Progress but incurs high Force

and Blame due to undesired motion, aggressively forcing its

way forward even when it is very close to another agent and

hindering its path. For the next 50s, the MPDM dynamically

switches policies maintaining low Force and Blame no longer

inconveniencing other agents.

This observation is strengthened by the empirical dis-

tributions of the metrics generated from 30k samples. We

notice that the Force and Blame distributions have greater

density at lower values for MPDM. Negative Progress, which

occurs when the agents come dangerously close to each other

exerting a very strong repulsive force, is absent in MPDM

as the agent would rather stop.

As stated before, PF are subject to local minima prob-

lems, so our simulation environment is susceptible to frontal

crossings resulting in temporal “freezing behaviors” [16],

where both agents remain for some seconds unable to escape

this situation. This behavior is only temporal due to the

dynamic nature of the environment, but it is atypical of

human beings. This limitation motivates the introduction

of Blame as a velocity sensitive metric to better analyze

navigation behavior in our simulator. In real environments,

Blame and Force are strongly correlated since people are not

likely to collide into a stationary robot.

D. Experiments with Noise

MPDM is a general approach in the sense that it makes no

assumptions about the quality of state estimation. The more

accurate our model of the dynamic agents, the better is the

accuracy of the predicted joint states. Most models of human

motion, especially in complicated situations, fail to predict

human behavior accurately. This motivates us to extensively

test how robust our approach is to noisy environments.

In our simulator, the observations z are modeled using

a stationary Gaussian distribution with uncorrelated vari-

ables for position, speed and orientation for the agent.

We parameterize this uncertainty by a scale factor kz :

{σpx
, σpy

, σ|v|, σθ} = kz × {2cm, 2cm, 2cm/s, 3◦}. The

corresponding diagonal covariance matrix is denoted by

diag(σpx
, σpy

, σ|v|, σθ). We do not perturb the goal. These

uncertainties are propagated in the posterior estate estimation

P (x|z).
The robot’s estimator makes assumptions about the obser-

vation noise which may or may not match the noise injected

by the simulator. This can lead to over and under-confidence

which affects decision making. In this section, we explore

the robustness of the system in the presence of these types of

errors. We define the assumed uncertainty by the estimator

through a scale factor ke, exactly as described above.

For each of the domains considered, we evaluate the

performance of the system by:

• varying kz for a fixed ke to understand how MPDM

performs when varying uncertainty in the environment.

• varying ke

kz
to understand how MPDM performs when

the robot’s estimator overestimates/underestimates the

uncertainty in the environment.
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Combinations of the policies as presented in Fig. 5. The data is averaged in groups of 10. We show here the mean and standard error. The robot errs on
the side of caution and Stops more often (manifested by a decline in Progress) for (gfs) as the robot overestimates the uncertainty in the environment.
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With the Stop policy (gs,gfs), the robot can adapt to a conservatism of the estimator and can behave cautiously when required.

For each setting, we run 100 epochs to collect 30k samples

for the metrics.

1) Varying environment uncertainty for a fixed level of

estimator optimism: We have studied the impact of different

levels of environment uncertainty (kz) at regular intervals of

diag(4cm, 4cm, 4cm/s, 6◦). The estimation uncertainty ke
is fixed at diag(10cm, 10cm, 10cm/s, 15◦).

Fig. 5 shows the performance of the robot for the hall-

way and the doorway domain respectively. We observe that

the Blame increases at a lowest rate for MPDM with the

complete policy set. If the option of stopping is removed,

we notice that the addition of the follow policy allows the

robot to maintain comparable Progress while reducing the

force and Blame associated. Given the option of stopping,

the robot still benefits from the option of following as it can

make more Progress while keeping Blame and Force lower.

We observe that MPDM allows the robot to maintain

Progress towards the goal while exerting less Force and

incurring less Blame. We also observe that the robot is more

robust to noise in terms of Blame incurred (lesser rate of

increase).

2) Varying the optimism of the estimator: We have studied

the impact of different levels of optimism for the estimation

error by varying the ratio ke

kz
from 0.25 to 1.5 in steps of 0.25

for the settings of kz mentioned above. The ratio indicates

over-estimation (> 1) or under-estimation (< 1). For each



(a) (b) (c)

Fig. 7. Real situations (a,b and c) illustrating the nature of the MPDM. On the top row is depicted some situations while testing the robot navigation in a
real environment. On the bottom row are shown the same configurations, but delayed by a few seconds. The lights on the robot indicate the policy being
executed, being green for Go-Solo, blue Follow and red Stop. By dynamically switching between policies, the robot can deal with a variety of situations.

ratio, we average over the values of kz .

Figs. 6 shows performance trends for both the domains.

In the doorway domain, we notice a lot of queuing behavior

near the doorway. For high values of kz , the robot is very

cautious and is often Stopped (reason behind the declining

Progress). Agents come very close to each other even if the

robot is stationary. Thus the performance of the system is

better captured by Blame rather than Force as explained in

Fig. 5.

We notice that the Progress as well as the Blame decline

as the robot over-estimates the noise and Stops more often

indicating that we err on the side of caution. On the other

hand, a ratio lesser than one implies over-optimism and can

cause rash behavior marked by greater Progress and Blame

increases. Even in these situations, the flexibility of multiple

policies enables navigation with lower Blame.

VII. REAL-WORLD EXPERIMENTS

Our real-world experiments have been carried out in the

hallway that the simulated hallway domain was modeled on

(Sec. VI). We implemented our system on the MAGIC robot

[17], a differential drive platform equipped with a Velodyne

16 laser scanner used for tracking and localization. An LED

grid mounted on the head of the robot has been used to

visually indicate the policy chosen at any time.

During two days of testing, a group of 8 volunteers was

asked to patrol the hallway, given random initial and goal

positions, similar to the experiments proposed in Sec. VI.

The robot alternated between using MPDM and using the

Go-Solo policy exclusively every five minutes. The perfor-

mance metrics were recorded every second, constituting a

total of 4.8k measurements.

In Fig. 7 are depicted some of the challenging situations

that our approach has solved successfully. On the Right and

Left scenes, the robot chooses to Stop avoiding the “freezing

robot behavior” which would result in high values of Blame

and Force. As soon as the dynamic obstacles are no longer an

hindrance, the robot changes the policy to execute and Goes-

Solo. In Fig. 7-Center we show an example of the robot

executing the Follow policy, switching between leaders in

order to avoid inconveniencing the person standing by the

wall. The video provided1 clearly shows the limitations of

the Go-Solo and how MPDM solves these limitations.

Fig. 8 shows the results of MPDM compared to a constant

navigation policy - Go-Solo. As discussed before in Sec. VI,

we show that our observations based on simulations hold

in real environments. Specifically, MPDM performs much

better, roughly 50%, in terms of Force and Blame while

sacrificing roughly 30% in terms of Progress. This results

in the more desirable behavior for navigation in social envi-

ronments that is qualitatively evident in the video provided.
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Fig. 8. The mean and standard error for the performance metrics over 10
second intervals (groups of 10 samples) using data from 40 minutes of real
world experiments. All measures are normalized based on the corresponding
mean value for the Go-Solo policy. This figure demonstrates that our results
obtained in simulations (Sec. VI) hold on real environments. MPDM shows
much better Force and Blame costs than only Go-Solo at the price of slightly
reducing its Progress.

VIII. CONCLUSIONS

In this paper, we have extended Multi-Policy Decision

Making (MPDM) , applying it to the robot motion planning

1https://www.youtube.com/playlist?list=

PLbPJN-se3-QiwIITl5cNsUV4-SRIyl9OM



in real social environments. We show that planning over the

policies Go-Solo, Follow-other, and Stop, allows us to adapt

to a variety of situations arising in this dynamic domain.

By switching between our proposed set of policies, we

have shown that we can improve the performance of the

robot as measured by a utility function that rewards task

completion (Progress) and penalizes inconvenience to other

agents (Force and Blame).

We have shown that reasoning over multiple complemen-

tary policies instead of using a single navigation algorithm

results in flexible behavior that can deal with a wide variety

of situations in addition to being robust to sensor noise and

estimator conservatism.
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