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Abstract 
 

The authors have developed a new robotics platform for 
researchers and educators, providing an improvement in 
processing power compared to existing low-cost solutions 
while maintaining a low cost. The platform includes a 
microcontroller board, GNU-based development tools, and 
a suite of device drivers and basic utilities. The authors 
successfully used the platform in a one-month long robotics 
crash-course at MIT. 

Motivation for a New Robotics Platform 

While several expensive robot kits are available commercially, 
many researchers cannot afford to spend thousands of dollars on a 
basic platform. Educators, attempting to improve the robot to 
student ratio, are even more constrained. Several robotics 
platforms have emerged that are affordable for both, including 
Lego Mindstorms and the Handy Board. However, for researchers 
and educators hoping to tackle harder robotics problems, the 
features of these boards may not be sufficient. We have 
developed a robotics platform that is comparable in cost and ease-
of-use to the Handy Board yet provides greater computational 
power and additional features. 
 
Existing platforms have many good traits that are worth 
emulating. The Handy Board serves as an example of a successful 
platform that enjoyed a long lifespan. Some of the traits that we 
believe are responsible for its popularity are simple operation, 
simple programming environment based on a commonly 
understood language (C), straightforward electrical interfaces 
enabling “hardware hacking,” and a general immunity to abuse, 
making it appropriate for use by inexperienced students. 
 
The primary disadvantage of the Handy Board, Lego Mindstorms, 
and other similar platforms is their limited computational power. 
For example, the Handy Board, able to execute only about 500k 
instructions per second, cannot handle video processing—
certainly not motion flow. The 32k memory capacity is also a 
limiting factor; a single 320x200 video frame cannot be held in 
memory at once. Robots building maps of their environment can 
also quickly exhaust the available memory. 
 
Another controller board deserving mention is the Compaq Skiff. 
Based on the StrongArm SA-110 microprocessor, the Skiff has 
vast processing power (up to 233MHz) and can address 16 

megabytes of DRAM. It also has a large number of I/O ports for 
interfacing to various types of sensors. The Skiff, however, is an 
extremely complicated board, consisting of two stacked PCBs 
with high-density parts on both sides of each PCB. The primary 
bus interface is PCI, which makes “hardware hacking” very 
difficult for novices. Lastly, the cost of the Skiff is likely to be a 
hardship for many.  
 
The Compaq Skiff can be programmed using the GNU toolchain, 
which provides a performance improvement over the 
HandyBoard’s Interactive C, which is interpreted. It also enables 
users to use existing and highly-optimized libc and mathematics 
libraries and the powerful gdb debugging suite. 
 
An additional shortcoming of many existing boards is the lack of 
explicit support for sophisticated peripherals. It was our goal to 
provide support for high-current (2A per channel) motor drivers 
and dedicated inputs for quadrature phase optical encoders, for 
example. While these capabilities can usually be added to existing 
boards, it often requires specific knowledge of the internals of the 
microcontroller and the board’s other components. 

A New Microcontroller Board 
After developing several small robots, and with plans of running 
an ambitious robotics course, we were motivated to design a new 
microcontroller board that could serve the role that the Handy 
Board did, while providing the computational power, memory 
capacity, and other features that we wanted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram of controller board 
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At the heart of our microcontroller board is the microprocessor: a 
Hitachi SH-2. The SH-2 is a 32-bit RISC microprocessor with a 
rich set of on-board peripherals, eliminating the need for many 
external components. The SH-2 has an integrated DRAM 
controller, making large memory capacity possible. In addition, 
the chip supports SRAM-style interfaces, making interfacing with 
other chips particularly easy. The particular model of SH-2 we 
selected is available in speed grades up to 30MHz, enabling about 
30MIPS of sustained performance. We added 2MB of DRAM, a 
16-1 analog multiplexer to increase the number of analog input 
ports, and an Altera CPLD to implement an interface to an LCD 
module and provide additional digital I/O ports. We selected a 
CPLD with a large number of macrocells so that users would be 
able to add additional functionality; for example, additional 
counter channels could be implemented. The board should be 
trivially modifiable to operate without a CPLD, with the SH-2 
controlling the LCD directly, in order to reduce the cost of the 
board. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SH-2 has many on-board timers, which can be used to 
control motors, servos, and decode quadrature phase signals from 
optical encoders. In our standard configuration, there are two 
quadrature phase decoder channels, four DC motor only ports, 
and four servo or motor ports. The four DC motor only ports are 
all connected to high current motor drivers providing 2 amps per 
channel and a current feedback circuit so that current usage can 
be monitored by software. 
 
The board is physically constructed on a four layer PCB, with 
two signal planes and planes for power and ground. We had 
originally hoped that ambitious amateurs would be able to make 
their own boards, which would imply a two layer PCB and no 
fine-pitch surface mount components. The reality is that virtually 
all modern microprocessors are only available in very small pitch 
packages (making assembly difficult) and their high clock speeds 
and greater pin counts make a robust two layer implementation 
very difficult. Using four PCB layers avoids many signal noise 

problems, while simultaneously making PCB layout an easier 
task.  
 
Our board is designed with a single power supply in mind. Logic 
components, sensors, and servos all require a regulated 5V 
supply, whereas DC motors (which often have a nominal rating of 
12V) use a higher, unregulated voltage available directly from the 
batteries. The regulated 5V source on our most recent boards is 
generated from the battery voltage. The voltage is heavily filtered 
to prevent the high-current motors from causing noise problems 
for the digital components.  
 
We have experimented with both linear regulators switching 
regulators. Linear regulators suffer from very poor efficiency 
when the battery voltage is much greater than 5V, resulting in 
heat problems in the regulator and causing batteries to drain 
needlessly quickly. With a Vbat of 6V, the efficiency of a linear 
regulator is roughly 83%, but with a Vbat of 12V, this drops to 
about 41%. Switching supplies are bulky, costly, and are less able 
to maintain a constant voltage when current demands change 
rapidly, but do yield greater efficiency—about 65% (independent 
of Vbat) in our implementation. However, we observed that 
voltage drops caused by the slow transient response of the 
switching regulators caused the board to erroneously reset—a 
fatal problem. We are still investigating the ideal power source 
setup, but for our next board revision, we intend to return to 
linear regulators and provide an option to use separate battery 
sources for the electronics and motors if Vbat is too large for 
efficient 5V regulation. For example, if a user needs to supply 
24V to the motors, they could provide a 6V supply for the 
electronics and an independent 24V supply for the motors.  
However, as long as the required motor voltage is close to 5V, a 
single power source becomes a viable and convenient alternative.  
 
While the board can make use of a wide variety of battery 
technologies, we have found consumer-grade NiMH batteries to 
perform very well. 1400mAH are commonly available in a single 
AA module, and we typically use eight of them to form a voltage 
source sufficiently high (9.6V) to operate our motors (nominally 
rated for 12V) and controller board efficiently. These batteries 
should theoretically last about an hour with the motors running, 
though in our experience 45 minutes is more realistic. 2200mAH 
batteries in a size C module are also available, but we have not 
tried them. A major advantage for users is that NiMH AAs are 
readily available from almost any electronics store, as are rapid 
one-hour chargers. 
 
The ideal connector for attaching external devices like motors and 
sensors would be polarized, inexpensive, high density, easy to 
assemble, and rugged. Generic 0.100 pitch header is inexpensive 
and high density but students have trouble assembling reliable 
connectors. Crimping connectors, easy to assemble and quite 
rugged, are a tempting alternative, but are very costly and 
typically take up a lot more room. We have elected to use generic 
header for analog and digital I/O, in virtually the same way as the 
Handy Board, but have used crimping connectors for the high 
current motor connectors. We also use crimping connectors for 
the quadrature phase connectors, since maintaining proper 

Figure 2. Photograph of controller board 



polarity is essential. We will be using female header exclusively 
on the next board revision to eliminate the risk of unoccupied 
header being shorted together by stray pieces of wire or other 
conductive material. 
 
We have only produced the board in very small runs, so we have 
not determined how much the board will cost in quantity. Our 
current estimates put the cost at about $250-$300, putting it well 
within reach of enthusiasts, and making it reasonable for research 
groups to build many boards to study robot interactions. 

Development Environment 

In addition to developing a controller board, we have worked to 
ensure that the entire GNU toolchain can generate code for it. 
Gas, gcc (C and C++), and newlib (a libc for embedded systems, 
including functions like strcmp, printf, and malloc) can all be 
used, just as they could be on a Unix machine. Code can be 
downloaded via serial link into either the SH-2's onboard FLASH 
or the RAM via a gdbstub. The gdbstub also allows programs 
running on the controller board to be interactively debugged from 
a PC. 
 
Runtime utilities are also available, including device drivers for a 
standard HD44780-compatible LCD display, PWM, quadrature 
phase decoders, and analog/digital I/O. In addition, we have 
written a lightweight multithreading library. 
 
The complete design of the controller board and all of the 
software tools have been placed in the public domain. We intend 
to support the software as best we can, and encourage others to 
base their robotics projects on our platform. Schematics, 
software, and other information are available at 
http://maslab.mit.edu.  

Applications in Education 
We recently completed teaching a month-long robotics course, 
known as MASLab or 6.186, at MIT. Like MIT’s 6.270 contest, 
our course is intensive; students meet every day Monday through 
Saturday. While we envision the course becoming larger in the 
future, we limited enrollment to three teams (each with about 
three students) so that we could better deal with any unexpected 
problems that might arise with our first attempt at teaching a 
robotics course with a new controller board.  
 
The goal of the contest was to build and program a robot capable 
of finding and grabbing “targets”, then pushing or pulling the 
targets back to the location where the robot was first turned on. 
The playing field was a smooth tile floor with a nine-inch high 
wall around the perimeter. The actual size and shape of the 
playing was intentionally and dramatically altered from run to 
run, but was about 100 square feet. Any number of obstacles (also 
with nine-inch walls) would be placed inside the playing field and 
random positions. Targets consisted of small boxes with active IR 
beacons to make them more easily detectable by robots. The walls 

and obstacles were all constructed out of hardboard, which can 
easily be detected by IR range finders. 
 
We created a small infrared beacon module that emits an IR 
signal containing a four-bit ID in every direction, and has a 
highly directional receiver. The modules have a typical range of 
12 feet, substantially more under good lighting conditions. By 
rotating the IR module around on a servo, it was possible to find 
the angle to other nearby modules. We also added several 
modules outside the playing field so that robots could implement 
an absolute positioning system using triangulation. We statically 
assigned IDs to each beacon so that when a module was detected, 
it could be trivially determined whether it was another robot, a 
target, or a navigation beacon. 
 
The teams were provided with all the basic pieces of a robot. 
High quality DC motors with integrated gearheads and encoders 
were obtained from surplus for about $25 each. Each team also 
received a pair of servos and IR range finders, as well as an IR 
transceiver module. We provided plexiglass, which can be easily 
cut and shaped, to form the base of the robot. Additional parts 
were provided when requested. 
 
The experience of our participants varied dramatically. We had 
one freshman, three sophomores, one junior, and three seniors 
participate. Of these, all but one was an EE/CS major. One person 
had previously taken 6.270, but no one else had any significant 
experience in developing an autonomous system. 
 
The teams had differing degrees of success. One team managed to 
successfully find, capture, and drag back a target while avoiding 
obstacles. They iteratively stopped, scanned their surroundings, 
and by assigning “points” to various sensor results, used a hill 
climbing strategy to determine their course. The second team was 
able to accurately (within a foot or so) triangulate the positions of 
targets by establishing the baseline and measuring angles to the 
targets at each end of the baseline. They measured the length of 
the baseline using odometry and were able to use odometry to 
drive to the target, but did not have time to incorporate obstacle 
avoidance into their routines. The third team, the team with the 
least experience, had significantly more difficulty. They initially 
invested a large amount of time writing code, underestimating the 
degree to which real-world non-idealities would impact the 
behavior of their robot. By the end of the contest, however, they 
could iteratively stop, scan, and move in the direction of the 
target, using odometry to return to their starting point in a straight 
line. 
 
We were pleased to see that all of the teams, even the least 
experienced ones, were able to build a relatively sophisticated 
robot—capable of using odometry and IR modules to navigate a 
very difficult playing field. Two of the teams used velocity 
feedback control systems (PD) for their drive motors. Students 
wrote in their course evaluations that they spent the most time 
gathering together basic behavioral “ingredients” (turning n 
degrees, panning the IR module for targets, driving in a straight 
line) and had only the last day or two to combine them together 
into a top-level strategy for retrieving a target. Given an 



additional week we believe all three robots would have all 
succeeded in retrieving a target. 
 
It was obvious that the most significant obstacle to the students in 
succeeding was time. Since the independent activities period 
during which our course is held will always be a month long, we 
must make that month more productive. We plan on combating 
this in several ways in next year’s course: 
 

• Hosting a “Build your chassis night”. In one case, a 
team was still doing basic mechanical construction 
on their robot at the halfway point, and all the teams 
took at least a week. We believe that students 
underestimating the total amount of time required to 
program the robot caused the delay. We plan on 
designating a day early in the course during which 
they will build the basic components of the chassis. 

 
• Checkpoints. To keep students from coding 

hopelessly elaborate control programs without first 
perfecting basic behavioral ingredients, we plan to 
set checkpoint dates during which they will 
demonstrate basic behaviors under contest-like 
conditions. 

 
• Additional background material. We found that 

providing background material and demonstrations 
of what was possible with an autonomous robot not 
only gave students a more concrete idea of what was 
possible, but also inspired them to think about the 
issues involved. 

 
We believe that the environment of our contest, consisting of a 
smooth surface but with obstacles at unknown locations, is 
particularly compelling to students; with virtually no 
modification, the robots could be made to navigate and retrieve 
targets in real-world environments, such as a dormitory hallway 
or office. 

Future Plans 
We are collaborating with the organizers of 6.270 to create the 
next controller board revision, which will be used in both 
contests next year. Our work to create a board suitable for both 
classes will help ensure the applicability of the design to an even 
broader range of researchers and educators. 

Conclusion 
 
We have developed a microcontroller board that offers solid 
performance at a price that is accessible to students and 
researchers. By using the GNU toolchain, we leverage existing 
compilers, libraries, and debugging tools. Multithreading was 
enabled with a library provided by the authors. 
 

The board was used in a month-long class by MIT 
undergraduates to build autonomous robots capable of 
performing predefined tasks in a realistic environment. In 
addition to providing an educational venue for artificial 
intelligence algorithms (such as path-finding and map-making), 
students had the opportunity to learn about embedded and real-
time systems programming. 
 
The combination of our controller board and a largely unknown 
playing field provides a motivating environment for developing 
control systems for intelligent autonomous vehicles. This is 
reinforced by an emphasis on software development rather than 
mechanical engineering. 
 
We believe that our controller board would be a useful asset to 
those building autonomous robots, as demonstrated by its 
successful use in our undergraduate course. Future revisions will 
continue to refine and improve the design. 
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