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Abstract—To operate reliably in real-world traffic, an au-
tonomous car must evaluate the consequences of its potential
actions by anticipating the uncertain intentions of other traffic
participants. This paper presents an integrated behavioral infer-
ence and decision-making approach that models vehicle behavior
for both our vehicle and nearby vehicles as a discrete set of closed-
loop policies that react to the actions of other agents. Each policy
captures a distinct high-level behavior and intention, such as
driving along a lane or turning at an intersection. We first employ
Bayesian changepoint detection on the observed history of states
of nearby cars to estimate the distribution over potential policies
that each nearby car might be executing. We then sample policies
from these distributions to obtain high-likelihood actions for each
participating vehicle. Through closed-loop forward simulation of
these samples, we can evaluate the outcomes of the interaction
of our vehicle with other participants (e.g., a merging vehicle
accelerates and we slow down to make room for it, or the
vehicle in front of ours suddenly slows down and we decide
to pass it). Based on those samples, our vehicle then executes
the policy with the maximum expected reward value. Thus, our
system is able to make decisions based on coupled interactions
between cars in a tractable manner. This work extends our
previous multipolicy system [11] by incorporating behavioral
anticipation into decision-making to evaluate sampled potential
vehicle interactions. We evaluate our approach using real-world
traffic-tracking data from our autonomous vehicle platform, and
present decision-making results in simulation involving highway
traffic scenarios.

I. INTRODUCTION

Decision-making for autonomous driving is hard due to
uncertainty on the continuous state of nearby vehicles and,
in particular, due to uncertainty over their discrete potential
intentions (such as turning at an intersection or changing
lanes).

Previous approaches have employed hand-tuned heuris-
tics [28, 29, 41] and numerical optimization [17, 21, 42], but
these methods fail to capture the coupled dynamic effects of
interacting traffic agents. Partially observable Markov deci-
sion process (POMDP) solvers [2, 26, 35] offer a theoretically-
grounded framework to capture these interactions, but have
difficulty scaling up to real-world scenarios. In addition,
current approaches for anticipating future intentions of other
traffic agents [1, 22, 24, 25] either consider only the current
state of the target vehicle, ignoring the history of its past
actions, or rather require expensive collection of training data.

In this paper, we present an integrated behavioral anticipa-
tion and decision-making system that models behavior for both
our vehicle and nearby vehicles as the result of closed-loop

Fig. 1. Our multipolicy approach allows us to sample from the likely coupled
interactions between traffic agents. In this simulation at a four-way stop-
sign-regulated intersection (§VI-D), we evaluate the outcomes of the possible
intentions of other cars to make a decision for our car. The bottom and
right cars proceed through the intersection, while the other two cars yield.
This experiment shows that our multipolicy sampling strategy generates high-
likelihood samples over the coupled interactions of vehicles, and that is orders
of magnitude faster than uninformed sampling strategies commonly used in the
literature (§VI-D). Legend: human-driven trajectories (red); rollouts from our
multipolicy sampling strategy (purple); high-likelihood trajectories obtained
by an uninformed sampling strategy (dark blue); trajectories sampled by the
uninformed strategy before finding a high-likelihood sample (light blue).

policies. This approach is made tractable by considering only
a finite set of a priori known policies. Each policy is designed
to capture a different high-level behavior, such as following a
lane, changing lanes, or turning at an intersection. Our system
proceeds in a sequence of two interleaved stages of behavioral
prediction and decision-making. In the first stage, we estimate
the probability distribution over the potential policies other
traffic agents may be executing. To this aim, we leverage
Bayesian changepoint detection to estimate which policy a
given vehicle was executing at each point in its history of
actions, and then infer the likelihood of each potential intention
of the vehicle. Furthermore, we propose a statistical test based
on changepoint detection to identify anomalous behavior of
other vehicles, such as driving in the wrong direction or
swerving out of lanes. Individual policies can therefore adjust
their behavior to react to anomalous cars.

In the second stage, we use this distribution to sample
over permutations of other vehicle policies and the policies
available for our car, with forward-simulation of these sam-
pled intentions to evaluate their outcomes via a user-defined



reward function. Our vehicle finally executes the policy that
maximizes the expected reward given the sampled outcomes.
Thus, our system is able to make decisions based on closed-
loop interactions between cars in a tractable manner.

We evaluate our behavioral prediction system using a real-
world autonomous vehicle, and present decision-making re-
sults in simulation involving highway traffic scenarios.

The central contributions of this paper are:
• A changepoint-based behavioral prediction approach that

leverages the history of actions of a target vehicle to infer
the likelihood of its possible future actions and detect
anomalous behavior online.

• A decision-making algorithm that evaluates the outcomes
of modeled interactions between vehicles, being able to
account for the effect of its actions on the future reactions
of other participants.

• An evaluation of the proposed system using both traffic
data obtained from a real-world autonomous vehicle and
simulated traffic scenarios.

This work extends our earlier work [11], where we proposed
the strategy of selecting between multiple policies for our car
by evaluating them via forward simulation, and demonstrated
passing maneuvers using a real-world autonomous vehicle.
However, that work did not address anticipation of policies for
other cars. In contrast, this paper presents a fully integrated
behavioral anticipation and decision-making approach.

II. RELATED WORK

A. Related Work on Behavioral Prediction

Despite the probabilistic nature of the anticipation problem,
some approaches in the literature assume no uncertainty on
the future states of other participants [10, 31, 33]. Such
an approach could be justified in a scenario where vehicles
broadcast their intentions over some communications channel,
but it is an unrealistic assumption otherwise.

Some approaches assume a dynamic model of the obstacle
and propagate its state using standard filtering techniques
such as the extended Kalman filter [13, 18]. Despite provid-
ing rigorous probabilistic estimates over an obstacle’s future
states, these methods often perform poorly when dealing
with nonlinearities in the assumed dynamics model and the
multimodalities induced by discrete decisions (e.g. continuing
straight, merging, or passing). Some researchers have explored
using Gaussian mixture models (GMMs) [14, 22] and context-
sensitive models [19, 20] to account for nonlinearities and
multiple discrete decisions. However, this approach does not
consider the history of previous states of the target object,
assigning an equal likelihood to each discrete hypothesis and
leading to a conservative estimate.

A common anticipation strategy in autonomous driving [7,
16, 21] consists in computing the possible goals of a target
vehicle by planning from its standpoint, accounting for its
current state. This strategy is similar to our factorization of
potential driving behavior into a set of policies, but lacks our
closed-loop simulation of vehicle interactions.

Recent work uses Gaussian process (GP) regression to learn
typical motion patterns for classification and prediction of
agent trajectories [24, 25, 40], particularly in autonomous driv-
ing [1, 38, 39]. Nonetheless, these methods require collecting
training data to reflect all possible motion patterns the system
may encounter, which can be time consuming. For instance,
a lane change motion pattern learned in urban roads will not
be representative of the same maneuver performed at higher
speeds on the highway.

B. Related Work on Decision Making

The first instances of decision making systems for au-
tonomous vehicles capable of handling urban traffic situations
stem from the 2007 DARPA Urban Challenge [12]. In that
event, participants tackled decision making using a variety
of solutions ranging from finite state machines (FSMs) [29]
and decision trees [28] to several heuristics [41]. However,
these approaches were tailored for very specific and simplified
situations and were, even according to their authors, “not
robust to a varied world” [41].

More recent approaches have addressed the decision making
problem for autonomous driving through the lens of trajectory
optimization [17, 21, 42]. However, these methods do not
model the closed-loop interactions between vehicles, failing
to reason about their potential outcomes.

The POMDP model provides a mathematically rigorous
formulation of the decision making problem in dynamic, un-
certain scenarios such as autonomous driving. Unfortunately,
finding an optimal solution to most POMDPs is intractable [27,
32]. A variety of general [2, 5, 26, 35, 37] and domain-
specific [8] POMDP solvers exist in the literature that seek to
approximate the solution. Nonetheless, online application of
POMDP solvers [6] remains challenging because they often
explore unlikely regions of the belief space.

The idea of assuming finite sets of policies to speed up
planning has appeared before in the POMDP literature [3, 23,
36]. However, these approaches dedicate significant resources
to compute their sets of policies, and as a result they are
limited to short planning horizons and relatively small state,
observation, and action spaces. In contrast, we propose to
exploit domain knowledge to design a set of policies that are
readily available at planning time.

III. PROBLEM FORMULATION

We first formulate the problem of decision making in
dynamic, uncertain environments with tightly coupled inter-
actions between multiple agents as a multiagent POMDP. We
then show how we exploit autonomous driving domain knowl-
edge to make approximations to the POMDP formulation, thus
enabling principled decisions in a tractable manner.

A. General Decision Process

Let V denote the set of vehicles interacting in a local
neighborhood of our vehicle, including our controlled vehicle.
At time t, a vehicle v ∈ V can take an action avt ∈ Av to
transition from state xvt ∈ X v to xvt+1. In our system, a state



xvt is a tuple of the pose, velocity, and acceleration and an
action avt is a tuple of controls for steering, throttle, brake,
shifter, and directionals. As a notational convenience, let xt
include all state variables xvt for all vehicles at time t, and
similarly let at ∈ A be the actions of all vehicles.

We model the vehicle dynamics with a conditional prob-
ability function T (xt, at, xt+1) = p(xt+1|xt, at). Similarly,
we model observation uncertainty as Z(xt, z

v
t ) = p(zvt |xt),

where zvt ∈ Zv is the observation made by vehicle v at time
t, and zt ∈ Z is the vector of all sensor observations made
by all vehicles. In our system, an observation zvt is a tuple
including the estimated poses and velocities of nearby vehicles
and an occupancy grid of static obstacles. Further, we model
uncertainty on the behavior of other agents with the following
driver model: D(xt, z

v
t , a

v
t ) = p(avt |xt, zvt ), where avt ∈ A is a

latent variable that must be inferred from sensor observations.
Our vehicle’s goal is to find an optimal policy π∗ that

maximizes the expected reward over a given decision horizon
H , where a policy is a mapping π : X × Zv → Av that
yields an action from the current maximum a posteriori (MAP)
estimate of the state and an observation:

π∗ = argmax
π

E

[
H∑
t=t0

∫
X
R(xt)p(xt) dxt

]
, (1)

where R(xt) is a real-valued reward function R : X → R.
The evolution of p(xt) over time is governed by

p(xt+1) =

∫∫∫
X Z A

p(xt+1|xt, at)p(zt|xt)

p(at|xt, zt)p(xt) dat dzt dxt.
(2)

The driver model D(xt, z
v
t , a

v
t ) implicitly assumes that the

instantaneous actions of each vehicle are independent of each
other, since avt is conditioned only on xt and zvt . However,
modeled agents can still react to the observed states of
nearby vehicles via zvt . That is to say that vehicles do not
collaborate with each other, as would be implied by an action
avt dependent on at. Thus, the joint density for a single vehicle
v can be written as
pv(xvt , x

v
t+1, z

v
t , a

v
t ) = p(xvt+1|xvt , avt )p(zvt |xvt )

p(avt |xvt , zvt )p(xvt ),
(3)

and the independence assumption finally leads to

p(xt+1) =
∏
v∈V

∫∫∫
Xv Zv Av

pv(xvt , x
v
t+1, z

v
t , a

v
t ) da

v
t dz

v
t dx

v
t .

(4)
Despite assuming independent vehicle actions, marginaliz-

ing over the large state, observation and action spaces in Eq. 4
is too expensive to find an optimal policy online in a timely
manner. A possible approximation to speed up the process,
commonly used by general POMDP solvers [2, 37] is to solve
Eq. 1 by drawing samples from p(xt). However, sampling over
the full probability space with random walks will yield a large
number of low probability samples (see Fig. 1). This paper
presents an approach designed to sample from high likelihood
scenarios such that the decision-making process is tractable.

B. Multipolicy Approach

We make the following approximations to sample from the
likely interactions of traffic agents:

1) At any given time, both our vehicle and other vehicles
are executing a policy from a discrete set of policies.

2) We approximate the vehicle dynamics and observation
models through deterministic, closed-loop forward simu-
lation of all vehicles with assigned policies.

These approximations allow us to evaluate the consequences
of our decisions over a limited set of high-level behaviors
determined by the available policies (for both our vehicle and
other agents), rather than performing the evaluation for every
possible control input of every vehicle.

Let Π be a discrete set of policies, where each policy
captures a specific high-level driving behavior. Let each policy
π ∈ Π be parameterized by a parameter vector θ capturing
variations of the given policy. For example, for a lane-
following policy, θ can capture the “driving style” of the
policy by regulating its acceleration profile to be more or less
aggressive. We thus reduce the search in Eq. 1 to a limited
set of policies. By assuming each vehicle v ∈ V is executing
a policy πvt ∈ Π at time t, the driver model for other agents
can be now expressed as:

D(xt, z
v
t , a

v
t , π

v
t ) = p(avt |xt, zvt , πvt )p(πvt |xt, z0:t), (5)

where p(πvt |xt, z0:t) is the probability that vehicle v is execut-
ing the policy πvt (we describe how we infer this probability
in §IV). Thus, the per-vehicle joint density from Eq. 3 can
now be approximated in terms of πvt :

pv(xvt , x
v
t+1, z

v
t , a

v
t , π

v
t ) = p(xvt+1|xvt , avt )p(zvt |xvt )

p(avt |xvt , zvt , πvt )p(πvt |xt, z0:t)p(x
v
t ). (6)

Finally, since we have full authority over the policy executed
by our controlled car q ∈ V , we can separate our vehicle from
the other agents in p(xt+1) as follows:

p(xt+1) ≈
∫∫
X q Zq

pq(xqt , x
q
t+1, z

q
t , a

q
t , π

q
t ) dz

q
t dx

q
t

∏
v∈V |v 6=q

∑
Π

∫∫
Xv Zv

pv(xvt , x
v
t+1, z

v
t , a

v
t , π

v
t ) dzvt dx

v
t

 . (7)

We have thus far factored out the action space from p(xt+1) by
assuming actions are given by the available policies. However,
Eq. 7 still requires integration over the state and observation
spaces. Our second approximation addresses this issue. Given
samples from p(πvt |xt, z0:t) that assign a policy to each vehi-
cle, we simulate forward in time the interactions of our vehicle
and other vehicles under their assigned policies, and obtain a
corresponding sequence of future states and observations. We
are thereby able to evaluate the reward function over the entire
decision horizon.



IV. BEHAVIORAL ANALYSIS AND PREDICTION VIA
CHANGEPOINT DETECTION

In this section, we describe how we infer the probability of
the policies executed by other cars and their parameters. Our
behavioral anticipation method is based on a segmentation of
the history of observed states of each vehicle, where each
segment is associated with the policy most likely to have
generated the observations in the segment. We obtain this seg-
mentation using Bayesian changepoint detection, which infers
the points in the history of observations where the underlying
policy generating the observations changes. Thereby, we can
compute the likelihood of all available policies for the target
car given the observations in the most recent segment, captur-
ing the distribution p(πvt |xt, z0:t) over the car’s potential poli-
cies at the current timestep. Further, full history segmentation
allows us to detect anomalous behavior that is not explained
by the set of policies in our system. The changepoint-detection
procedure is illustrated by the simulation in Fig. 2. We next
describe the anticipation method for a single vehicle, which
we then apply successively to all nearby vehicles.

A. Changepoint Detection

To segment a target car’s history of observed states, we
adopt the recently proposed CHAMP algorithm by Niekum
et al. [30], which builds upon the work of Fearnhead and Liu
[15]. Given the set of available policies Π and a time series of
the observed states of a given vehicle z1:n = (z1, z2, . . . , zn),
CHAMP infers the MAP set of times τ1, τ2, . . . , τm, at which
changepoints between policies have occurred, yielding m+ 1
segments. Thus, the ith segment consists of observations
zτi+1:τi+1

and has an associated policy πi ∈ Π with parame-
ters θi.

The changepoint positions are modeled as a Markov chain
where the transition probabilites are a function of the time
since the last changepoint:

p(τi+1 = t|τi = s) = g(t− s), (8)

where g(·) is a pdf over time, and G(·) denotes its cdf.
Given a segment from time s to t and a policy π, CHAMP

approximates the logarithm of the policy evidence for that
segment via the Bayesian information criterion (BIC) [4] as:

logL(s, t, π) ≈ log p(zs+1:t|π, θ̂)−
1

2
kπ log(t− s), (9)

where kπ is the number of parameters of policy π and
θ̂ are estimated parameters for policy π. The BIC is a
well-known approximation that avoids marginalizing over the
policy parameters and provides a principled penalty against
complex policies by assuming a Gaussian posterior around the
estimated parameters θ̂. Thus, only the ability to fit policies
to the observed data is required, which can be achieved via a
maximum likelihood estimation (MLE) method of choice (we
elaborate on this in §IV-B).

As shown by Fearnhead and Liu [15], the distribution Ct
over the position of the first changepoint before time t can be

estimated efficiently using standard Bayesian filtering and an
online Viterbi algorithm. Defining

Pt(j, q) = p(Ct = j, q, Ej , z1:t) (10)

PMAP
t = p(Changepoint at t, Et, z1:t), (11)

where Ej is the event that the MAP choice of changepoints
has occurred prior to a given changepoint at time j, results in:

Pt(j, q) = (1−G(t− j − 1))L(j, t, q)p(q)PMAP
j (12)

PMAP
t = max

j,q

[
g(t− j)

1−G(t− j − 1)
Pt(j, q)

]
. (13)

At any time, the most likely sequence of latent policies
(called the Viterbi path) that results in the sequence of obser-
vations can be recovered by finding (j, q) that maximize PMAP

t ,
and then repeating the maximization for PMAP

j , successively
until time zero is reached. Further details on this changepoint
detection method are provided by Niekum et al. [30].

B. Behavioral Prediction
In contrast with other anticipation approaches in the lit-

erature which consider only the current state of the target
vehicle and assign equal likelihood to all its potential in-
tentions [16, 21, 22], here we compute the likelihood of
each latent policy by leveraging changepoint detection on the
history of observed vehicle states.

Consider the (m + 1)th segment (the most recent), ob-
tained via changepoint detection and consisting of observations
zτm+1:n. The likelihood and parameters of each latent policy
π ∈ Π for the target vehicle given the present segment can be
computed by solving the following MLE problem:

∀π ∈ Π, L(π) = argmax
θ

log p(zτm+1:n|π, θ). (14)

Specifically, we assume p(zτm+1:n|π, θ) to be a multivariate
Gaussian with mean at the trajectory ψπ,θ obtained by simulat-
ing forward in time the execution of policy π under parameters
θ from timestep τm + 1:

p(zτm+1:n|π, θ) = N (zτm+1:n;ψπ,θ, σI), (15)

where σ is a nuisance parameter capturing modeling error
and I is a suitable identity matrix (we discuss our forward
simulation of policies further in §V-B). That is, Eq. 15 essen-
tially measures the deviation of the observed states from those
prescribed by the given policy. The policy likelihoods obtained
via Eq. 14 capture the probability distribution over the possible
policies that the observed vehicle might be executing at
the current timestep, which can be represented, using delta
functions, as a mixture distribution:

p(πvt |xt, z0:t) = η

|Π|∑
i=1

δ(αi) · L(πi), (16)

where αi is the hypothesis over policy πi and η is a normal-
izing constant. We can therefore compute the approximated
posterior of Eq. 7 by sampling from this distribution for each
vehicle, obtaining high-likelihood samples from the coupled
interactions of traffic agents.



Fig. 2. Policy changepoint detection on a simulated passing maneuver on a highway. Our vehicle (far right) tracks the behavior of another traffic agent (far
left) as it navigates through the highway segment from right to left. Using the tracked vehicle’s history of past observations (green curve), we are able to
infer which policies are most likely to have generated the maneuvers of the tracked vehicle.

C. Anomaly Detection

The time-series segmentation obtained via changepoint de-
tection allows us to perform online detection of anomalous
behavior not modeled by our policies. Inspired by prior work
on anomaly detection [9, 25, 34], we first define the properties
of anomalous behavior in terms of policy likelihoods, and then
compare the observed data against labeled normal patterns in
previously-recorded vehicle trajectories. Thus, we define the
following two criteria for anomalous behavior:

1) Unlikelihood against available policies. Anomalous be-
havior is not likely to be explained by any of the available
policies, since they are designed to abide by traffic
rules and provide a smooth riding experience. Therefore,
behaviors like driving in the wrong direction or crossing
a solid line on the highway will not be captured by the
available policies. We thus measure the average likelihood
among all segments in the vehicle’s history as the global
similarity of the observed history to all available policies:

S =
1

m+ 1

m+1∑
i=1

L(πi), (17)

where πi is the policy associated with the ith segment.
2) Ambiguity among policies. A history segmentation that

fluctuates frequently among different policies might be
a sign of ambiguity on the segmentation. To express
this criterion formally, we first construct a histogram
capturing the occurrences of each policy in the vehicle’s
segmented history. A histogram with a broad spread
indicates frequent fluctuation, whereas one with a single
mode is more likely to correspond to normal behavior.
We measure this characteristic as the excess kurtosis of
the histogram, κ = µ4

σ4 − 3, where µ4 is the fourth
moment of the mean and σ is the standard deviation.
The excess kurtosis satisfies −2 < κ < ∞. If κ = 0,
the histogram resembles a normal distribution, whereas
if κ < 0, the histogram presents a broader spread. That
is, we seek to identify changepoint sequences where there
is no dominant policy.

Using these criteria, we define the following normality mea-
sure given a vehicle’s MAP choice of changepoints:

N =
1

2
[(κ+ 2)S] . (18)

This normality measure on the target car’s history can then be
compared to that of a set of previously recorded trajectories
of other vehicles. We thus define the normality test for the

current vehicle’s history as N < 0.5γ, where γ is the minimum
normality measure evaluated on the prior time-series.

V. MULTIPOLICY DECISION-MAKING

We now present the policy selection procedure for our
car (Algorithm 1), which implements the formulation and
approximations given in §III by leveraging the anticipation
scheme from §IV. The algorithm begins by drawing a set of
samples s ∈ S from the distribution over policies of other
cars via Eq. 16, where each sample assigns a policy πv ∈ Π
to each nearby vehicle v, excluding our car. For each policy
π available to our car and for each sample s, we roll out
forward in time until the decision horizon H all vehicles under
the policy assignments (π, s) with closed loop simulation to
yield a set Ψ of simulated trajectories ψ. We then evaluate the
reward rπ,s for each rollout Ψ, and finally select the policy
π∗ maximizing the expected reward. The process continuously
repeats in a receding horizon manner. Note that policies that
are not applicable given the current state x0, such as an
intersection handling policy when driving on the highway, are
not considered for selection (line 5). We next discuss three
key points of our decision-making procedure: the design of
the set of available policies, using forward simulation to roll
out potential interactions, and the reward function.

Algorithm 1: Policy selection procedure.
Input:
• Current MAP estimate of the state, x0.
• Set of available policies Π.
• Policy assignment probabilities (Eq. 16).
• Planning horizon H .

1 Draw a set of samples s ∈ S via Eq. 16, where each
sample assigns a policy to each nearby vehicle.

2 R ← ∅ // Rewards for each rollout

3 foreach π ∈ Π do // Policies for our car

4 foreach s ∈ S do // Policies for other cars

5 if APPLICABLE(π, x0) then
6 Ψπ,s ← SIMULATEFORWARD(x0, π, s,H)

// Ψπ,s captures all vehicles

7 R ← R∪{(π, s, COMPUTEREWARD(Ψπ,s))}
8 return π∗ ← SELECTBEST(R)

A. Policy Design

There are many possible design choices for engineering the
set of available policies in our approach, which we wish to
explore in future work. However, in this work we use a set



of policies that covers many in-lane and intersection driving
situations, comprising the following policies: lane-nominal,
drive in the current lane and maintain distance to the car
directly in front; lane-change-right/lane-change-left, separate
policies for a single lane change in each direction; and turn-
right, turn-left, go-straight, or yield at an intersection.

B. Sample Rollout via Forward Simulation

While it is possible to perform high-fidelity simulation
for rolling out sampled policy assignments, a lower-fidelity
simulation can capture the necessary interactions between
vehicles to make reasonable choices for our vehicle behavior,
while providing faster performance. In practice, we use a
simplified simulation model for each vehicle that assumes
an idealized steering controller. Nonetheless, this simplifica-
tion still faithfully describes the high-level behavior of the
between-vehicle interactions our method reasons about. For
vehicles classified as anomalous, we simulate them using a
single policy accounting only for their current state and map
of the environment, since they are not likely to be modeled
by the set of behaviors in our system.

C. Reward Function

The reward function for evaluating the outcome of a rollout
Ψ involving all vehicles is a weighted combination of metrics
mq(·) ∈ M, with weights wq that express user importance.
The construction of a reward function based on a flexible
set of metrics derives from our previous work [11], which
we extend here to handle multiple potential policies for other
vehicles. In our system, typical metrics include the distance to
the goal at the end of the evaluation horizon as a measure of
accomplishment, minimum distance to obstacles to evaluate
safety, a lane choice bias to add a preference for the right
lane, and the maximum yaw rate and longitudinal jerk to
measure passenger comfort. For a full policy assignment (π, s)
with rollout Ψπ,s, we compute the rollout reward rπ,s as the
weighted sum rπ,s =

∑|M|
q=1 wqmq(Ψ

π,s). We normalize each
mq(Ψπ,s) across all rollouts to ensure comparability between
metrics. To avoid biasing decisions, we set the weight wq to
zero when the range of mq(·) across all samples is too small
to be informative.

We finally evaluate each policy reward rπ for our vehicle as
the expected reward over all rollout rewards rπ,s, computed as
rπ =

∑|S|
k=1 rπ,skp(sk), where p(sk) is the joint probability of

the policy assignments in sample sk, computed as a product of
the per-vehicle assignment probabilities (Eq. 16). We use ex-
pected reward to target better average-case performance, as it
is easy to become overly conservative when negotiating traffic
if one only accounts for worst-case behavior. By weighting by
the probability of each sample, we can avoid overcorrecting
for low-probability events.

VI. RESULTS

To evaluate our behavioral anticipation method and our
multipolicy sampling strategy, we use traffic-tracking data
collected using our autonomous vehicle platform. We first

introduce the traffic-tracking dataset and the vehicle used to
collect it. Next, we use this dataset to evaluate our prediction
and anomaly detection method and the performance of our
multipolicy sampling strategy. Finally, we evaluate our mul-
tipolicy approach performing integrated behavioral analysis
and decision-making on highway traffic scenarios using our
multivehicle simulation engine.

A. Autonomous Vehicle Platform, Dataset, and Setup

To collect the traffic-tracking dataset we use in this work, we
have used our autonomous vehicle platform (shown in Fig. 3),
a 2013 Ford Fusion equipped with a sensor suite including four
Velodyne HDL-32E 3D LIDAR scanners, an Applanix POS-
LV 420 inertial navigation system (INS), GPS, and several
other sensors.

Fig. 3. Our autonomous car platform, used to record the traffic-tracking
dataset we use in this work. The vehicle is equipped with a sensor suite
including four LIDAR units and survey-grade INS.

The vehicle uses prior maps of the area it operates on that
capture information about the environment such as LIDAR
reflectivity and road height, and are used for localization and
tracking of other agents. The road network is encoded as a
metric-topological map that provides information about the
location and connectivity of road segments, and lanes therein.

Estimates over the states of other traffic participants are
provided by a dynamic object tracker running on the vehicle,
which uses LIDAR range measurements. The geometry and
location of static obstacles are also inferred onboard using
LIDAR measurements.

The traffic-tracking dataset consists of 67 dynamic object
trajectories recorded in an urban area. Of these 67 trajectories
(shown in Fig. 4), 18 correspond to “follow the lane” maneu-
vers and 20 to lane change maneuvers, recorded on a divided
highway. The remaining 29 trajectories correspond to maneu-
vers observed at a four-way intersection regulated by stop
signs. All trajectories were recorded by the dynamic object
tracker onboard the vehicle and extracted from approximately
3.5 h of total tracking data.

In all experiments we use a C implementation of our system
running on a single 2.8GHz Intel i7 laptop computer.

B. Behavioral Prediction

For our system, we are interested in correctly identifying
the behavior of target vehicles by associating it to the most
likely policy according to the observations. Thus, we evaluate
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Fig. 4. Trajectories in the traffic-tracking dataset used to evaluate our
multipolicy framework. (a) 29 trajectories recorded at a four-way intersection.
(b) 38 trajectories comprising lane change and “follow the lane” maneuvers
on a divided highway, plotted on a common frame of reference.

our behavioral analysis method in the context of a classifica-
tion problem, where we want to map each trajectory to the
underlying policy (class) that is generating it at the current
timestep. The available policies used in this evaluation are:

Π = {lane-nominal, lane-change-left, lane-change-right}
∪

{turn-right, turn-left, go-straight, yield},
(19)

where the first subset applies to in-lane maneuvers and the
second subset applies to intersection maneuvers. For all poli-
cies we use a fixed set of parameters tuned empirically to
control our autonomous vehicle platform, including maximum
longitudinal and lateral accelerations, and allowed distances to
nearby cars, among other parameters.

To assess each classification as correct or incorrect, we
leverage the road network map and compare the final lane
where the trajectory actually ends to that predicted by the
declared policy. In addition, we assess behavioral prediction
performance on subsequences of incremental duration of the
input trajectory, measuring classification performance on in-
creasingly longer observation sequences.

Fig. 5 shows the accuracy and precision curves for policy
classification over the entire dataset. The ambiguity among hy-
potheses results in poor performance when only an early stage
of the trajectories is used, especially under 30% completion.
However, we are able to classify the trajectories with over 85%
accuracy and precision after only 50% of the trajectory has

been completed. Note, however, that the closed-loop nature of
our policies allows us to maintain safety at all times regardless
of anticipation performance.

Fig. 5. Precision and accuracy curves of current policy identification via
changepoint detection, evaluated at increasing subsequences of the trajectories.
Our method provides over 85% accuracy and precision after only 50% of
trajectory completion, while the closed loop nature of our policies guarantee
safety at all times regardless of anticipation performance.

C. Anomaly Detection

We now qualitatively explore the performance of our
anomaly detection test. We recorded three additional trajecto-
ries corresponding to two bikes and a bus. The bikes crossed
the intersection from the sidewalk, while the bus made a
significantly wide turn. We run the test on these trajectories
and on three additional intersection trajectories using the
minimum normality value on the intersection portion of the
dataset, γ = 0.1233. As shown by the results in Fig. 6, our
test is able to correctly detect the anomalous behaviors not
modeled in our system.

(a) Car 1 (b) Car 2 (c) Car 3

(d) Bike 1 (e) Bike 2 (f) Bus

Fig. 6. Anomaly detection examples. Top row: normal trajectories driven
by cars from the intersection dataset. Bottom row: anomalous trajectories
driven by bikes (d), (e), and a bus (f). Our test is able to correctly detect the
anomalous trajectories not modeled by our intersection policies (γ = 0.1233).

D. Multipolicy Sampling Performance

To show that our approach makes decision-making tractable,
we assess the sampling performance in terms of the likelihood
of the samples using the recorded intersection trajectories. We
compare our multipolicy sampling strategy to an uninformed
sampling strategy such as those used by general decision-
making algorithms that do not account for domain knowledge
to focus sampling (e.g., Silver and Veness [35], Thrun [37]).



We take groups of coupled trajectories from the dataset
involving from one to four vehicles negotiating the inter-
section simultaneously. For each vehicle in each group, we
compute, via Eq. 15, the likelihood of the most likely policy
πML in {turn-right, turn-left, go-straight, yield} according to
the corresponding trajectory in the group. We then evaluate
the computation time required by each of the two sampling
strategies to find a sampled trajectory with a likelihood equal
or greater than L(πML).

The uninformed strategy generates, for each vehicle in-
volved, a trajectory that either remains static for the duration
of the trajectory to yield or crosses the intersection at constant
speed. This decision is made at random. If the decision
is to cross, the direction of the vehicle is determined via
random steering wheel angle rates in a simple car kinematic
model. Conversely, the multipolicy sampling strategy consists
of randomly selecting policies for each vehicle and obtaining
their rollouts. The computation times for each strategy are
shown in Table I. Times are computed out of 100 simulations
for each case (from one to four cars). Although the time
required grows dramatically fast for both strategies due to
the combinatorial explosion of vehicle intentions, these results
show that our multipolicy sampling strategy is able to find
high-likelihood samples orders of magnitude faster than an
uninformed sampling strategy. A visualization of a sample
simulation of this experiment is shown in Fig. 1.

TABLE I
COMPARISON OF SAMPLING STRATEGIES.

STRATEGY NUM. CARS AVG. COMP. TIME STD. DEVIATION
Uninformed 1 15.3990 s 9.1014 s
Multipolicy 0.0012 s 0.0004 s
Uninformed 2 39.6037 s 24.4575 s
Multipolicy 0.0036 s 0.0014 s
Uninformed 3 99.5785 s 76.3222 s
Multipolicy 0.0100 s 0.0050 s
Uninformed 4 296.9633 s 232.5125 s
Multipolicy 0.0247 s 0.0142 s

E. Decision-Making Results

We tested the full decision-making algorithm with behav-
ioral prediction in a simulated environment with a multi-lane
highway scenario involving two nearby cars. Fig. 7(a) shows
the scenario used for testing at an illustrative point at half way
through the scenario. This simulation uses the same policy
models we have developed and tested on our real-world test
car [11]. Fig. 7(b) shows the policy reward function, in which
the chosen policy is the maximum of the available policies.
Note that this decision process is instantaneous, which explains
the oscillations when policies are near decision surfaces. We
prevent the executed policy from oscillating with a simple
pre-emption model that ensures we only switch policies when
distinct maneuvers (such as lane-changes) are complete.

We collected timing information on different operations in
the experiment to evaluate runtime performance. The main
expense is forward simulation and metric evaluation for each
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Fig. 7. (a) Results of a simulated multi-car interaction scenario, in which the
car under our control (shown in green) approaches the slower vehicles A and
B from behind. Vehicle B starts by executing a lane change from the center
to left lane, which it is just completing at the time shown, while A remains in
the right lane. Cyan lines show the simulated rollouts for our vehicle, while
magenta lines show the simulated rollouts for each of the other vehicles. (b)
Evaluation of the policy reward functions for each of the three policies over
the course of the simulated scenario. Note that not all policies are applicable
at all times, which we render as a discontinuity.

rollout, however, these tasks are easily parallelizable. In the
test scenario in which we rollout all sample permutations, the
theoretical maximum number of rollouts is 27 given 3 policy
options per vehicle, but in practice the maximum number of
rollouts was 12, with a mean of 8.6. This smaller number
of rollouts is because not all policies are applicable at once.
Parallel evaluation performance is bounded by the maximum
time for a single rollout, for which the mean worst time was
84ms, and the worst time over the whole experiment was
106ms. Even in the worst case, our real-time decision-making
target of 1 Hz is acheiveable.

VII. CONCLUSION

We introduced a principled framework for integrated behav-
ioral anticipation and decision-making in environments with
extensively coupled interactions between agents. By explicitly
modeling reasonable behaviors of both our vehicle and other
vehicles as policies, we make informed high-level behavioral
decisions that account for the consequences of our actions.

We presented a behavior analysis and anticipation system
based on Bayesian changepoint detection that infers the like-
lihood of policies of other vehicles. Furthermore, we provided
a normality test to detect unexpected behavior of other traffic
participants. We have shown that our behavioral anticipation
approach can identify the most-likely underlying policies that
explain the observed behavior of other cars, and to detect
anomalous behavior not modeled by the policies in our system.

In future work we will explicitly model unexpected be-
havior, such as the appearance of a pedestrian or vehicles
occluded by large objects. We can also extend the system
to scale to larger environments by strategically sampling
policies to focus on those outcomes that most affect our
choices. Exploring principled methods for reacting to detected
anomalous behavior is also an avenue for future work.
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