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Abstract— The goal of this paper is to develop a robot with
a grounded spatial vocabulary. Such a vocabulary would allow
it to give and follow directions, and would give it valuable
additional information in aiding localization and navigation.
We approach the problem by defining an ontology of space
(including corridor, doorway, and room) and by creating a
Convolutional Neural Network (CNN) that allows the robot
to classify LIDAR sensor data accordingly. In particular, we
propose a CNN architecture that performs comparably or
better than existing methods based on engineered features.
Training CNNs can be fickle; we describe several specific aspects
of our approach that are important for good performance in
this task.

I. INTRODUCTION

Environmental structure can encode key semantic infor-
mation about the type of place a robot is in. Corridors
typically consist of long, narrow open spaces, whereas door-
ways appear as short, narrow gaps in structure. Robots can
exploit semantic information to improve on or add to their
capabilities.

For example, knowing that a robot has transitioned from
a room into a corridor adds extra context for a localization
problem. By pairing semantic place knowledge with natu-
ral language, a robot can be given verbal instructions for
navigation, such as “Follow this corridor until you reach
an intersection, then take the hall on the left.” Semantic
information can also be used to segment the environment
facilitating the creation of topological maps.

Given the ubiquity of range sensors in modern robotics,
there is value in exploring methods for extracting as much
information from them as possible. Though it is unlikely that
2D range data on its own is sufficient to reliably distinguish
high level concepts such as specific classes of room (kitchen,
living room, etc.), it has proven useful for more general place
recognition tasks [1], [2], learning to distinguish between
classes such as “doorway”, “corridor” and “room.” Much of
the previous work in place recognition focuses on carefully
hand-engineering features for the task at hand, often deriving
them from 2D or 3D range data.

We propose that CNNs are particularly well suited to the
task of place classification based on 2D range data. Past
methods have examined classification methods built around
statistical features extracted from the raw range returns.
However, it is standard practice to convert sets of range
returns into occupancy grids for mapping and navigation
tasks. Occupancy grids are analogous to grayscale images
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Fig. 1: CNN-based classification results on the fr79 dataset. Blue
denotes a room, orange a corridor, and yellow a doorway.

describing local structure. We hypothesize that, just as CNNs
are adept at learning task appropriate features for classifying
objects in images, they will be similarly adept at identifying
features in occupancy grid “images” relevant to classifying
place types.

This approach can be used for general map annotation
tasks, as seen in Fig. 1, and is also well suited for processing
live data streams from robots, as might be desirable when
following directions in an unknown environment.

In this work, we demonstrate that CNNs can, in fact, be
used effectively to apply semantic labels to places based
solely on 2D range data. In particular, on the classes “room”
and “corridor”, we obtain accuracy above 92%. We also
analyze the strengths and weaknesses of the system. Our
contributions in the work include:

• We propose and evaluate a specific network structure to
improve performance with regards to inter-class confu-
sion.

• We experimentally demonstrate that CNNs perform
comparably to or better than previous work based on
a well-known dataset.

II. RELATED WORK

Semantic place categorization adds information about
structure to robotic systems in addition to providing
grounded place labels in aiding human interaction with
robots. It has been of particular interest to the topological
mapping community, since the identification and recognition



of distinct places is critical to the functionality of topologi-
cally based systems. We broadly cluster approaches into two
main groupings based on application: online labeling systems
and map post-processing systems.

A. Online Labeling Systems

As the name implies, online labeling systems produce
semantic place labels based on live sensor data from the
robot. For example, one might combine range and camera
data from a robot to attempt to classify the location the robot
is currently in. These methods are well suited to tasks such as
trajectory labeling or, more generally, operating in unknown
environments.

For example, Mozos et al. present a place classification
system using AdaBoost to distinguish places based on 2D
range data [2]. The authors hand-construct a number of
features describing the range data, allowing them to train a
classifier to distinguish between rooms, corridors, doorways,
and halls. Sousa et al., operating on a similar class of
geometric features, show some success applying support
vector machines (SVMs) to place classification, as well [3].

Shi et al. demonstrate a method for applying logistic
regression to the same dataset and features as Mozos et al [4].
An interesting twist to this method is its ability to determine
place categories for individual beams in a given scan, aiding
in overall classification results.

Other recent works have investigated the use of 3D range
and intensity data in addition to visual features acquired from
a camera to distinguish between more specific place classes
such as offices and kitchens [5], [6]. The rich features pro-
vided by these additional sensors allow high level knowledge
(such as types of objects in a scene) to contribute to the
semantic labeling process.

Hellbach et al. propose using non-negative matrix factor-
ization on occupancy grid data to perform feature discov-
ery [7]. They are able to achieve high rates of classification
accuracy when using this as input for generalized learning
vector quantization.

Online methods are not limited to range data. In addition
to distinguishing spaces based on structural features, spaces
may also be distinguished by the presence of particular
objects in them. Several methods examine the process of
building up a semantic hierarchy of spaces based on the
presence of various objects in the scene [8], [9]. For example,
a cluster of chairs around a table may be learned to denote
a meeting space, while a table covered with books and
a computer is a work space. Simultaneous occurrence of
both suggests presence in an office. Models built based on
relationships between objects in a scene have proven effec-
tive at identifying environmental context. These works are
driven primarily by vision-based object recognition systems
whereas the focus of this work is on the information encoded
in 2D structural data.

Much like the works above, the method introduced in
this paper is intended for use as an online method. Live
occupancy grid data produced by the robot may be fed
into the system, which returns a semantic label. The key

insight in this paper is that CNNs, commonly used in the
image classification domain, can also be applied effectively
to occupancy grid data, eliminating the challenges of hand-
designing features.

B. Map post-processing Systems

A variety of applications focus on post-processing metric
maps to produce semantically annotated versions of the map,
topological representations of the space, or both. They may
employ strategies similar to online-labeling systems, or even
directly use the output of such systems, but may additionally
make use of spatial relationships between locations to help
constrain the problem.

Beeson et al. employed extended Voronoi graphs (EVGs)
constructed from 2D occupancy grids to identify places for
the purpose of topological map building [1]. In this context,
places can be distinguished based on the presence of various
numbers of “gateways” and “path fragments” defined by
the EVG. This can also provide some general discriminative
ability about the types of places. For example, an intersection
can only exist when there are multiple path fragments.

Friedman et al. introduce the Voronoi random field (VRF)
which uses a Voronoi graph to generate a conditional random
field (CRF), thereby incorporating spatial relationships into
the classifier [10]. For example, labels will generally be
locally consistent with their neighbors. Like Mozos et al.,
they also use AdaBoost to learn a classifier for different place
types, later using the results from the AdaBoost classifier in
the CRF. By taking advantage of the connectivity features,
they are able to improve labeling consistency in addition to
providing useful segmentations of the environment, which
can be used to extract a topological representation of the
space.

Mozos et al. follow up the original AdaBoost work by
examining how further processing may improve the per-
formance of the original system [11]. By applying some
heuristics to correct initial labeling results, the authors are
then able to segment the environment by region to produce
largely accurate topological maps of several environments.

Additionally, it has been shown that associative Markov
networks (AMNs) can be useful in improving classification
results in the context of map-annotation [12], [11]. AMNs
take advantage of the fact that labels are spatially correlated
to produce improved classification results. For example,
moving 10 cm often does not change the type of location
that the robot is in.

Our proposed method could be used as input to many of
these systems. However, we do not investigate data post-
processing methods for improving our results in this paper.

III. PLACE RECOGNITION TARGETING INTERACTIVE
SYSTEMS

Our target application for the semantic labels produced by
our system is an interactive robot in an indoor environment.
Interactions include instructing the robot to perform tasks
such as delivery or finding an open meeting room, or the
reverse, as when a robot describes a scene to the human. The



Fig. 2: The input gridmap is fed through several convolution/pooling layers before the results are classified by a multilayer perceptron.
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Fig. 3: Example occupancy grids created from single LIDAR scans
for three place classes. These serve as input to the CNN. Black
un-carved space, while white denotes carved free space. We
assume un-carved by default, carving out free space based on
range returns from our 2D LIDAR. This allows observations
falling outside the fixed range of the occupancy grid add
information to the image.

environment may not be known in advance, so it is important
that the robot can produce reasonable classifications in
unknown domains from as little as a single viewpoint. For
this reason, we only use live sensor data as input to the
classification system (e.g. range measurements and pose).
The system should also be robust to viewing angle, producing
consistent labeling for the same XY location regardless of
robot orientation.

The input is a fixed-size occupancy grid centered on the
pose of the robot such that the robot is facing down the
X-axis. As can be seen in Fig. 3, our occupancy grids are
created by carving out free space, as opposed to a more
traditional format in which all space is assumed free until
structure is observed. To eliminate “striping” in the maps
caused by gaps between LIDAR strikes, we also carve out
space between consecutive strikes by interpolating between
them.

If space carving were not employed, range returns falling
outside the range of our fixed-size occupancy grids are lost,
adding no information to the system. Space carving allows
us to retain some information about distant range returns,
even if our local occupancy grid is small.

One hazard of this representation is that of scale; e.g.
corridors come in many shapes and sizes. Without sufficient
training data across scales, however, the CNN is unlikely
to capture the important scale-invariant features of some
classes. We incorporate a scaling step (detailed further be-
low) into our training procedure to mitigate this issue.

A. Classifying Places With CNNs

We hypothesize that the features relevant to distinguishing
classes of places in occupancy grids are similar to those
learned by the CNNs employed in image-based object clas-
sification tasks, therefore CNNs will also prove useful in
this domain. CNNs are known to learn increasingly complex
and specific features by combining results from previous
convolutional layers [13]. While CNNs containing upwards
of 20 layers can be found in the literature [14], we achieved
good performance with relatively small networks.

We employ a network structure loosely based on LeNet-
5 [15]. Input is fed through a stacked pair of {convolution,
ReLU, mean pooling layer} groupings. The feature maps
are then fed into a fully connected ReLU layer before being
collapsed into a probability distribution-like output across
class labels by a fully connected Softmax layer. One final
fully connected layer is applied to this distribution to produce
a single label as the classifier’s output. Our network structure
can be seen in more detail in Fig. 2.

The final fully-connected layer after the softmax plays
a critical role in classification. Using the LeNet-5 network
structure, the penultimate softmax layer outputs were “scene
contains a” detectors. The input occupancy grids often cap-
ture several classes in one image, especially in the case of
doorways, from which both a room and a corridor may
often be visible. As a result, it is not uncommon to see
a situation when both the room-detecting and doorway-
detecting portions of the network activate simultaneously.

This confusion often manifests in a split probability dis-
tribution, where the system is split between two or more
classes. Perhaps because doorways are small compared to
the other classes, this signal in tends to be overwhelmed by
the nearby presence of rooms and corridors. The presence
of this confusion can actually be a source of information,
though. For example, the presence of simultaneous corridor,
room, and doorway signals may, in fact, be indicative the



(a) fr79 test – hand-labeled (b) fr79 test – CNN

Fig. 4: Hand-labeled test data for the fr79 dataset (a) compared to
labels produced by our CNN (b). The other half of building fr79
was used to train the CNN, while training data from fr52 was
used as a validation set to prevent overfitting.

Room Corridor Doorway

Room 98.3% 1.1% 0.6%
Corridor 0.7% 99.1% 0.2%
Doorway 24.1% 60.4% 15.5%
Overall Accuracy 97.8%

TABLE I: Classification confusion matrix, with the true values
listed by row, for fr79 test. Our method performs well on room
and corridor classes, but underperforms on doorways.

doorway is the true class label, as this confusion only occurs
when the robot is in a doorway.

The last fully-connected layer is designed to capture
information based on these patterns in the final probability
distribution. For example, the layer can override a strong
room signal in favor of a weaker, but significant, doorway
signal. Experimentally, we found that adding this final fully
connected layer resulted in a nearly 33% increase in correct
doorway classifications.

B. Training Procedure

Neural networks are notoriously difficult to train [16].
The power to discover relevant discriminatory features based
on the data also leads to a well known tendency to overfit
the training set. To mitigate the problem of overfitting, we
incorporate a validation set into the training procedure. At the
end of each epoch, the current network is tested against the
validation set. If classification performance has improved, the
current network parameters are saved, and training continues.
If, after a certain number of epochs, no improvement has
been seen, we revert to the best parameters based on the
validation set and terminate the training procedure. Final test
results are then produced from a third, independent test set.

To further increase the generality of the features learned,
we address the impact of potential biases or limitations in
the training data. For example, corridors come in a variety
of widths, but if the training set only contains one example
corridor of a fixed width, this information is lost. To augment
the variety in training examples, we randomly apply X
and Y scale transformations between 85% and 115% to
training examples during runtime. The dataset used in this
paper already contains a wide variety of randomly oriented
viewpoints, so we found that introducing further random
rotations to the data did not noticeably change performance.

(a) fr52 test – hand-labeled (b) fr52 test – CNN

Fig. 5: Hand-labeled test data for the fr52 dataset (a) compared to
labels produced by our CNN (b). The other half of building fr52
was used to train the CNN, while training data from fr79 was
used as a validation set to prevent overfitting.

Room Corridor Doorway

Room 97.8% 2.1% 0.1%
Corridor 7.4% 92.3% 0.4%
Doorway 51.7% 32.4% 16.9%
Overall Accuracy 95.3%

TABLE II: Classification confusion matrix, with the true values
listed by row, for fr52 test. Accuracy on corridors decreases
compared to that seen in fr79 test. This can likely be overfitting
the model to the limited training data. In particular, note the
difference in structure between the training example of a dead-
end in a hallway compared to that seen in the test set, where
the majority of corridor errors can be seen.

If there are widely imbalanced numbers of training exam-
ples for each class (as there are in our datasets, since doors
and even corridors take up much less space than rooms), the
network can be biased towards detecting the more prevalent
classes. For example, doorways account for only 2.3% of
labeled examples in one of our training sets. Unsurprisingly,
this causes the resulting CNN to overwhelmingly bias results
towards the dominant class, “room.”

One method for addressing this phenomenon is random
reselection of training examples from the smaller pools
of class examples, also known as oversampling [17]. This
operation may be repeated during a training epoch until each
example from the largest pool of class examples has been
seen once. If we had 1000 training instances of rooms, 500
of corridors, and 100 of doorways, each room example would
be presented once, each corridor twice, and each doorway ten
times. In conjunction with our runtime data augmentation,
this increases the number of “unique” class examples. We
found that this mitigated the impact of class imbalance for
our dataset. For multi-threading purposes, data may also be
split into mini-batches in a similar manner.

Additional strategies for avoiding overfitting include incor-
porating dropout and/or regularization to the network during
training. These methods can force the network to use a more
diverse array of its possible inputs, rather than overwhelm-
ingly preferring a few, high-weight inputs. We found that
incorporating dropout had erratic effects depending on the
training data used, sometimes dramatically improving results
on the doorway class, for example, other times significantly



worsening it. As a result, we present results without dropout,
which were more consistent overall.

IV. RESULTS

We evaluate our system on the dataset1 used by Mozos
et al. in [2]. The dataset consists of thousands of hand-
labeled, 360 degree LIDAR scans generated from maps of
three separate buildings. Scans were gathered every 5 cm
with random robot orientations. For each building, the scans
are divided into a training half and a test half depending
on which side of the building they were collected from.
Mozos et al. present results for each building separately,
training their algorithm on the training half and evaluating
on the test half. We present building-specific results for our
method based on the same training/test partitions, in addition
to cross-building results.

We present results for buildings fr52 and fr79, which each
contain examples of the classes room, corridor, and doorway.
An example composite image of hand-labeled training scans
from the fr79 dataset can be seen in Fig. 4a.

We use an in-house neural network library written in C to
construct our CNN. Training was performed without GPU
acceleration on a machine containing 32 GB of RAM and 2
2.5 GHz Intel Xeon processors, giving a total of 24 hyper-
threaded cores. Training time typically took between 8 and
24 hours, depending on the structure and parameterization
of the network.

A. Choosing Network Parameters

When training a CNN, the choice of the size of the input
and size and number of hidden nodes can impact network
performance. We limited our input to 10 cm occupancy grids,
which balanced capturing large areas while preserving fine-
scale structure needed for doorways.

Experiments were performed for images capturing 4×4 m
through 10×10 m regions surrounding the robot. We found
that selecting smaller regions often improved performance
on doorways, but at the cost of distinguishing classes such
as corridors and rooms. This result can intuitively be linked
back to the scale of the places in question. Doorways occupy
small areas, thus small occupancy grids filter out distracting
information. Conversely, many parts of a corridor or room
may only be adequately captured at a larger scale. As a result,
we opted to focus on the largest, 10×10 m occupancy grids,
as they seemed best suited for capturing relevant information
about all classes.

Based on this input image size, convolutional filter sizes
were set to 9 × 9 pixels. Additional filter sizes were not
explored, as these settings seemed to work well. Six first-
level features proved sufficient to capture low-level details
in the occupancy grids. Variation in the number of second-
level filters had only marginal impact on the results. Very
large and very small numbers of hidden nodes in the fully-
connected layer resulted in noisy results, but we found that
using between 50 and 500 nodes produced similar levels of

1http://www2.informatik.uni-freiburg.de/
∼omartine/place_data_sets.html

(a) fr79 CNN on fr52 test (b) fr52 CNN on fr79 test

Fig. 6: Test results for fr52 and fr79 based on training data from
the other building. Though overall accuracy still exceeds 90%,
performance decreases, likely due to overfitting building specific
characteristics.

Room Corridor Doorway

Room 97.0% 1.8% 1.2%
Corridor 16.6% 81.2% 2.2%
Doorway 29.7% 47.3% 23.0%
Overall Accuracy 93.2%

TABLE III: Percentage of proposed labels (column) compared to
the true label (row) for fr52 test data, trained on fr79.

Room Corridor Doorway

Room 98.8% 1.1% 0.0%
Corridor 24.4% 75.6% 0.0%
Doorway 73.9% 20.8% 5.3%
Overall Accuracy 92.4%

TABLE IV: Percentage of proposed labels (column) compared to
the true label (row) for fr79 test data, trained on fr52.

performance. Accuracy varied by less than 1% between the
three network structures. We present results for 100 hidden
nodes, as this resulted in the best overall performance across
classes.

With our implementation of this architecture, we are able
to produce a classification of a single 100 × 100 occupancy
grid in 7 ms on a consumer grade desktop equipped with an
Intel i7-2600K processor clocked at 3.4 GHz and 8 GB of
RAM.

B. Map Annotation

Though our system is designed for use online, it is
easy to demonstrate its performance across viewpoints in
an environment by using it in a map annotation task. We
train two networks, one using the fr79 training set, validated
against fr52 training set during training, and the other trained
by reversing the sets. Our network structure can be seen in
Fig. 2. Then, both networks are evaluated against the fr52
and fr79 test sets.

Classification results trained and tested on fr79 can be
seen in Fig. 4, while results tested on fr52 can be seen
in Fig. 5. Hand-labeled training sets were used for training
and validation, while test sets were reserved for evaluation.
Results generated by the CNN classifier are visualized for
both the test and the training sets.



Accuracy on both test sets are comparable to or better
than those seen in the literature, achieving 97.8% accuracy
on fr79 and 95.3% accuracy on fr52 (see Table I and Table II
for class specific breakdowns). In comparison, Mozos et al.
report 93.4% accuracy on fr79 and 92.1% on fr52 with their
sequential AdaBoost method [2]. Labels show large degrees
of spatial consistency, in particular for rooms and corridors,
although there is some speckled noise.

Doorways prove challenging to effectively classify. As
documented in Sec. III-A, this can be attributed to the fact
that views from doorways inherently contain other classes,
as well as the small amount of training data generated by a
class occupying such a small area. On the fr79 dataset, we
are only able to achieve 15.5% accuracy on doorways in the
test set. Mozos et al. only report training error for individual
classes, but they, too, report the highest individual class error
was seen for doorways.

Further investigation of the failures shows that a large por-
tion of doorway detections register just beyond the bounds
of the labeled regions. Given the subjective nature of the
doorway annotations in the training and test data, these re-
sults could still be quite serviceable in practical applications.
Additional training instances of doorways would also present
better opportunity for learning general models.

C. Performance on New Environments

In this section, we examine how the classifiers trained
in Sec. IV-B perform in new environments from which no
training data has been seen. We would like to know if the
internal representations of classes being learned are general
enough to be used in novel domains. To this end, we evaluate
the fr79 classifier on the fr52 test set and the fr52 classifier
on the fr79 test set. Annotated map data for both tests can
be seen in Fig. 6.

Overall accuracy on both test sets remains high, but does
decrease compared to when a classifier trained on the other
half of the same building is used. This is likely due to
overfitting building specific characteristics. For example, the
end of the corridor in the fr52 training data is very different
from that in the fr79 test data. As a result, this region of fr79
is mostly misclassified as “room.” Likewise, the doorways in
both training environments are largely dissimilar from those
in the test environments, making them even more challenging
to learn.

The most challenging aspect of this dataset is the lack of
diversity of “places” (e.g. specific instances of doorways).
For example, though the variety of viewpoints provides
robustness to orientation, there are 10 or fewer examples
of doorways in either of the training sets. As a result, it is
difficult to learn a model of doorway that generalizes well
to new environments.

V. CONCLUSION

In this paper, we have demonstrated that CNNs can be
used to great effect in learning semantic place labels from 2D
range data. Results generalize well between environments,
but could be improved by increased variety in the training

data. Nonetheless, our method performs as well or better than
existing work.
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