
FLAT2D: Fast Localization from Approximate Transformation into 2D

Robert Goeddel1, Carl Kershaw1, Jacopo Serafin2, and Edwin Olson1

Abstract— Many autonomous vehicles require precise local-
ization into a prior map in order to support planning and
to leverage semantic information within those maps (e.g. that
the right lane is a turn-only lane.) A popular approach in
automotive systems is to use infrared intensity maps of the
ground surface to localize, making them susceptible to failures
when the surface is obscured by snow or when the road is
repainted. An emerging alternative is to localize based on the
3D structure around the vehicle; these methods are robust to
these types of changes, but the maps are costly both in terms
of storage and the computational cost of matching.

In this paper, we propose a fast method for localizing based
on 3D structure around the vehicle using a 2D representation.
This representation retains many of the advantages of “full”
matching in 3D, but comes with dramatically lower space and
computational requirements. We also introduce a variation of
Graph-SLAM tailored to support localization, allowing us to
make use of graph-based error-recovery techniques in our
localization estimate. Finally, we present real-world localization
results for both an indoor mobile robotic platform and an
autonomous golf cart, demonstrating that autonomous vehicles
do not need full 3D matching to accurately localize in the
environment.

I. INTRODUCTION

Many autonomous vehicles require fast and accurate lo-
calization estimates to safely plan and navigate through the
environment. Even a 0.5 m lateral position error can be
serious for a lane keeping application. Consumer grade GPS
is insufficiently accurate to support these needs, which has
resulted in the development of algorithms based on data from
LIDAR and cameras.

3D LIDAR has proven particularly popular on state-of-
the-art autonomous vehicles due to its accuracy and ability
to produce fast, 360◦ FOV information about the surrounding
environment. Additionally, 3D LIDAR sensors are more
robust to occlusion than their 2D counterparts. However,
the data from these sensors can be challenging to use in
localization applications. The dense 3D prior maps necessary
to support 3D matching operations take up large amounts
of storage space, making it impractical to locally store full
3D maps of large geographic regions. Indeed, it can take
hundreds of MBs of storage for even a small urban region.
On the other hand, systems cannot tolerate the risks incurred
by fetching data on-demand from a remote source.

Assuming the storage challenges have been overcome,
alignment and localization in 6DOF still present challenges.

1Robert Goeddel, Carl Kershaw, and Edwin Olson
are with the Department of Computer Science and En-
gineering, The University of Michigan, Ann Arbor, MI
{rgoeddel,ckershaw,ebolson}@umich.edu

2Jacopo Serafin is with the Department of Computer Science, Sapienza
University of Rome, Rome, Italy serafin@dis.uniroma1.it

(a) Scene w/ Ramps (b) 2D Map

Fig. 1: An example map for a scene containing (left to right) a
16◦, 14.5◦, and 10◦ ramp. Black denotes scan matching structure,
red navigational hazard, light gray unknown, and white observed
free space. The slope cutoff for hazards is 15◦. Due to noise, the
14.5◦ ramp is intermittently marked as a hazard.

Traditional 3D alignment algorithms like Iterative Closest
Point (ICP) have poor convergence properties and require
good initial registration to produce high quality alignments.
Non-uniformity in 3D LIDAR data can exacerbate conver-
gence issues.

2D LIDAR sensors are often used in indoor robotic
applications, resulting in prior map representations are com-
pact and efficient to match against. However, the planar
nature of these sensors makes them susceptible to errors due
to occlusion by transient obstacles, or complete failure to
observe off-plane hazards. Thus, it is desirable to find a way
to use rich, robust 3D LIDAR information as efficiently as
we use the existing 2D data.

Unlike a 6DOF ICP approach, our proposed system deter-
mines only three degrees-of-freedom of the robot: x, y, and
θ. However, roll and pitch can be easily extracted from a
low-cost accelerometer, and reasonably accurate z estimates
(if needed by an application at all) can be encoded in the
prior map, since we can safely assume the car stays on the
ground.

Our approach is based on 2D scan matching against
vertical structure extracted from a 3D point cloud. The
verticality constraint ensures crisp, easily matchable scans
that produce precise localization results. The structure of the
Velodyne VPL-16 and HDL-32E sensors (namely: spinning,
vertical fans of laser diodes) make them particularly well
suited for the rapid identification of such structure. Switching
to a 2D representation significantly reduces map storage
needs.

Particle filters are often used for localization systems using
prior maps. In this paper, we propose an alternative based
on the GraphSLAM formulation, allowing us to leverage



recovery methods such as max mixtures [1] or switchable
constraints [2]. The advantages include immunity from par-
ticle depletion and produce higher precision solutions.

In this paper, we demonstrate that 2D localization systems
can enable effective operation of autonomous vehicles. In
particular, we introduce:

• A fast, slope-based algorithm for creating compact, 2D
structure maps suited for scan matching based on 3D
Velodyne LIDAR data;

• An implementation of 2D localization based on Graph-
SLAM, allowing us to incorporate state-of-the-art out-
lier rejection techniques;

• Results from a real-world 2D localization system de-
ployed on an autonomous golf cart as well as a mid-
sized mobile robot designed for indoor/outdoor recon-
naissance, demonstrating that our 2D method accurately
localizes both systems with greatly reduced storage
needs compared to a full 3D system.

II. RELATED WORK

A. LIDAR-Based Localization

The notion of using 2D matching methods for 3D tasks
is not new. Thrun et al. demonstrated a 3D map-building
system based around 2D scan-matching [3]. A full 3D
polygon map is constructed based on data from a separate,
upwards facing sensor. The 3D representation is kept sparse
by eliminating overly similar polygons. However, this system
only uses a planar LIDAR for scan matching purposes,
missing potentially useful off-plane features. Nobili et al.
directly compared the performance of a 2D SLAM system
based on both planar and 3D LIDAR [4]. They conlude
that, while the planar configuration resulted in slightly more
accurate localization, the maps built with a VLP-16 were
more robust to environmental changes.

Accurate registration of 3D data is a significant challenge
for 3D methods. In the 2D domain, Olson, Diosi, and
Kleeman, among others, have demonstrated methods for fast
and accurate registration of scans [5], [6]. However, in 3D
spaces, most applications employ some variation of ICP [7].
ICP can work well with dense data, but is ill suited for
matching between scans consisting of non-uniform rings of
data, as in the case of Velodyne sensors. Variations such as
Serafin and Grisetti’s Normal Iterative Closest Point (NICP)
improve the convergence properties, but are still designed
with dense data in mind, such as that from an RGB-D
sensor [8].

Nonetheless, some 3D SLAM variants based on 3D
LIDAR exist. Moosmann and Stiller introduced a SLAM
method specifically targeting the Velodyne HDL-64E [9].
Transformations between scans are resolved using ICP. The
authors modify the nearest-neighbor data association search
to also take into account the normals at each point, making
their search more robust to errors.

Wolcott and Eustice demonstrated a method for localiza-
tion based on a prior 3D ground map, exploiting intensity
information to match this model against data from a inex-
pensive monocular camera [10]. By focusing on ground-only

matching, it eliminates some of the need to store a dense 3D
prior. This method performs comparably to purely LIDAR-
based methods. However, it has difficulty with occlusions
due to dynamic obstacles and weather conditions (i.e. snow
or puddles).

To address these issues, Wolcott and Eustice employed
a 2D approach similar to the one presented in this work.
Dense 3D data is compressed into a 2D grid, where each
cell contains a Gaussian mixture map summarizing the
vertical structure [11]. This greatly reduces the storage needs
for prior maps. They extend Olson’s multiresolution scan
matcher [6] to handle mixture map representations, yielding
scan matches for 20 cm resolution maps at 3-4 Hz. Our
results in this work suggest that an even simpler, more
compact representation of structure may be sufficient for
localization needs.

B. Camera-Based Localization

Another class of 3D localization methods focuses on
extracting high level features rather than aligning the full
scans. For example, Cummins and Newman presented FAB-
MAP, an appearance-based SLAM system [12]. FAB-MAP
recognizes previously visited places based on a visual vo-
cabulary, even in the presence of varying visual conditions.
However, the system is better suited to identifying large-scale
loop closures, rather than precisely localizing the vehicle
within the environment.

Sattler et. al demonstrated a method for registering images
to a database of 3D point models [13]. The authors find corre-
spondences between an image and model by comparing SIFT
descriptors extracted from each. At this point, RANSAC may
be used to estimate the camera pose. The method, however,
is only sufficient for registering pose within several meters
and still depends on dense 3D priors.

C. Extracting 2D Map Information From 3D Data

Korah et al. introduced the Strip Histogram Grid (SHG),
a polar variation of voxel grid methods created to aid
recognition of structure in the environment [14]. The SHG
is able to encode information over a larger reason than
traditional voxel-based representations, enabling the identifi-
cation of vertical structure over larger regions. The authors
demonstrate its application to 3D scene segmentation for
dense representations of urban scenes.

Morton and Olson presented the HLD classifier for iden-
tifying terrain based on 3D LIDAR data [15]. The classifier
handles both positive and negative obstacles by classifying
cells based on height, slope, and data density. Additionally,
it propagates this information through the map to fill in
unobserved regions. This method is tailored for obstacle
detections needed by navigation systems, though it can be
tuned for localization. However, the message-passing portion
of the algorithm is expensive, limiting its applicability to
high-speed environments.

Stanford’s DARPA Grand Challenge Team extracted ob-
stacle information from Velodyne data by comparing the
distance between the concentric rings generated by each



laser during a complete sweep of the sensor [16]. As the
terrain changes, the rings compress. By comparing measured
distance between beams to expected distance, very small
obstacles (on the scale of a curb) can be reliably detected.
In this paper, we propose a structure classification strategy
based on a similar principle of observing differences between
rings of the scan, but explicitly classifying based on the slope
between consecutive points in a vertical slice of returns.

III. EXTRACTING STRUCTURE FROM 3D POINTS

In several of the works described above, 3D LIDAR data
is converted into 2D representations for use in localization
or navigation. Most systems have need of both of these
capabilities, but the type of structure extracted from the 3D
point data differs greatly depending on the task at hand.
Navigation must identify all hazardous structure, including
plants, curbs, and other vehicles. However, the performance
of SLAM and localization systems can be negatively affected
by an overabundance of structure to match. If “fuzzy,”
unreliably observable structures such as long grass, a bush,
or even a sloped wall are presented to a scan matcher, the
variation between scans can result in bad alignments and
poor pose estimates.

This section introduces a pair of methods for extracting
high-quality 2D structure maps to be used primarily in
localization. The first is an improvement over a baseline
strategy based on counting the number of points falling into
a 2D bin. The second exploits structure in Velodyne sensors,
classifying structure based on its estimated verticality.

A. A Baseline Method for 2D Structure Extraction

Many commonly applied 2D structure extraction methods
are built around a quantization of the world in XY space [4].
In the simplest case, range returns falling within a specified
z-height band relative to the ground are projected down into
this grid and marked as obstacles. This works well for hazard
estimation, but is very susceptible to noise.

Alternatively, one can partition the world into voxels, only
marking structure on a 2D summary map where the number
of occupied voxels in a vertical line exceeds the specified
threshold. This ensures a certain level of “verticality” (i.e.
repeatability) in the detected structure.

One weakness of these methods is their inability to deal
with negative obstacles. Negative obstacles may generate no
or very distant range returns, causing them to not appear in
the map at all. Issues also arise from quantization errors due
to noise.

B. Compact Voxel Popcount

We propose a novel voxel representation that is compact,
fast, and adaptive to local terrain height. Each XY grid
cell stores a floating point minimum z-height and a 64-bit
integer. Each bit of this integer corresponds to a fixed-size
band of vertical range. Most systems are only concerned
with potential obstacles within a relatively limited z-range
around the ground; the minimum z-height parameter allows
us to focus on a particular region of interest (i.e. 20 cm to

(a) (b)

Fig. 2: An 8-bit example of our compact, bit-based voxel represen-
tation. Bits in an integer correspond to bands of z-height. Bits are
set to 1 when LIDAR points fall into their band, with the 0th bit
corresponding to the band containing the lowest observed height
for that XY bin, as in (a). If new observations fall below a bin’s
current z-min, previous measurements are bit-shifted to efficiently
make room for the new observations (b).

(a) No Fill-In (b) 25 cm Fill-In (c) 50 cm Fill-In

Fig. 3: By applying a hole fill-in algorithm during 3D data process-
ing, we densify the resulting 2D map data, facilitating later scan
matching. Larger amounts of fill in greatly increase effective data
density, but can negatively affect the system’s ability to represent
certain fine-detail structures (e.g. a picket fence).

200 cm). When a LIDAR point is received that is lower than
the minimum z-height, the XY cell can be updated using a
simple bit shift. An 8-bit example can be seen in Fig. 2.

In this formulation, the identification of vertical structure
can be performed with a POPCOUNT operation on the
integer: if the number of bits set to 1 exceeds a threshold, the
cell passes a verticality test and is marked as structure. Ad-
ditionally, we may efficiently isolate smaller vertical bands
of data with bitwise-AND: for example isolating obstacles
the same height as the vehicle.

Our representation may be further improved by working
in polar coordinates. Most 3D LIDAR sensors operate by
rotating a vertical fan of lasers, resulting in an obvious
relationship between the data and a polar coordinate frame.
By binning in polar coordinates, we avoid costly projection
into Cartesian coordinates. Similarly, quantization error now
only occurs in the range dimension, rather than in both X
and Y. The SHG is another instance of a polar binning
method [14].

C. Slope-based, Multi-Class Structure Detection

We propose a second novel extension to 2D structure rep-
resentation, namely, to represent multiple classes of structure
in one map. In our applications, we find that it is helpful
to distinguish between hazard, an obstacle to navigation,
and slammable structure, i.e. vertical structure that we can
reliably scan match against. In this way, we may support



Fig. 4: A successful scan match in an indoor environment. In this
example, we match observations from the current pose (yellow)
against those from the prior map (teal). The red triangle denotes
the historic pose closest to our prior estimate of the robot’s current
global pose.

navigation systems and localizations systems with the same
data stream without adversely affecting the performance of
either.

The fan-like structure Velodyne HDL-32E and VPL-16
sensors lends itself well to the extraction of slope information
between points. Even small obstacles appear as noticeable
jumps in slope, making them easy to detect. In contrast to
the previous method, which looks for vertical continuity in
a single cell, this method can also detect hazards that span
multiple cells, such as steeply sloped ground.

A multi-class representation of structure emerges naturally
from this formulation: structure exceeding some minimum
slope should be marked as hazardous to navigation, while
structure exceeding an additional slope threshold should
be upgraded to slammable structure. This is appealing, as
hazards may be marked based on the capabilities of the
particular system. In our indoor robot system, for example,
we find that marking navigation hazards for slopes exceeding
15◦ and slammable structure at slopes exceeding 80◦ off the
XY plane works well.

We process a single, vertical fan of range returns from the
bottom up, conservatively marking obstacles in an occupancy
grid at the location of the return nearest to the robot.
Additionally, we add a “dummy return” at (0, 0, 0), the
position of the robot, to the scan, since we assume the robot
to be on the ground at all times. Example results of a 2D map
constructed from a single rotation of a Velodyne VPL-16 can
be seen in Fig. 1.

In our system, we find that sufficient performance is
achieved by measuring the slope between 2 consecutive
vertical measurements. However, particularly in applications
where sensor noise is a concern, slopes may be fit across 3
or more points. This can have the effect of smoothing out
smaller obstacles, causing them to disappear, but likewise
can improve the robustness of “slammable” detection.

Though this method could accumulate structure in a polar
coordinate frame, the goal of marking mixed-classes of
structure is to support navigation and localization simulta-
neously based on a unified 2D map. Navigation tasks are

most commonly performed in Cartesian coordinate frames,
so we choose to produce our 2D structure maps in Cartesian
coordinates, as well. Operating on this unified map saves
computation, as it eliminates the need to produce separate
maps for each task.

This method still experiences challenges with negative
obstacles due to frequent lack of direct observability. In cases
where drop offs are observable, the slope-based classification
strategy will correctly identify dangerous drop offs, but
otherwise will fail to mark a hazard.

D. Hole Fill-In

Though Velodyne data is more dense rotationally than
vertically (0.38◦ horizontal vs. 2◦ vertical spread between
observations for a VPL-16 rotating at 20 Hz), at a distance
of 15 m, points are already 10 cm apart. These holes in the
data present challenges during scan matching, which relies
on having sufficient data density to detect overlap in struc-
ture. To address this problem, we employ a straightforward
technique for filling gaps in the data.

For consecutive vertical slices, returns from each laser
diode are considered in turn. If, in both slices, the returns
were marked as the same class of structure, we fill in a line
of the same class between the corresponding cells in our 2D
map. This allows the scan matcher to make matches at longer
ranges. To avoid filling structure where none exists, we only
apply fill-in to range returns that are less than a specified
distance apart. Example 2D mapping results before and after
fill-in can be seen in Fig. 3.

IV. SLAM AND LOCALIZATION

We consider two coordinate systems in which the robot
can operate: local and global. The robot’s local coordinates
are determined by its open-loop odometry. The robot’s global
coordinates are the actual position of the robot in the world,
e.g. as defined by an existing global map. The goal of
localization, then, is to compute a transformation L2G that
can convert local coordinates into global coordinates.

A robot may have one or more systems capable of gener-
ating L2G estimates, including but not limited to GPS and
scan matching against a known map. We find it convenient
to formulate the challenge of merging these estimates as a
equivalent to solving a SLAM problem: each L2G estimator
produces noisy observations in which we place a certain
amount of confidence. Thus, we may find the Maximum
Likelihood Estimate (MLE) L2G by minimizing the error
among these separate estimates.

A. SLAM-Graph Formulation

Our SLAM system and our localization formulate Graph-
SLAM in distinct ways. The SLAM system creates robot
pose nodes at fixed intervals of motion, linking them with
relative factors from odometry, camera, and scan matching
observations (detailed below). Likewise, global factors pro-
vided primary by GPS or human annotation can be added
to the graph, though our system only uses these for initial
registration of the map to satellite imagery. In conjunction



FIXED

Scanmatch
GPS

Fig. 5: A simple example of a factor graph for localization. In addi-
tion to standard factors based on GPS or odometry measurements,
scan matching factors are added describing transformations back
to a known map (in red). During optimization, the portion of the
graph corresponding to the known map is held fixed, allowing the
localization graph to remain compact.

with the previously described 2D structure extraction meth-
ods, this allows us to construct globally-consistent maps of
the environment.

Our particular system poses localization in terms of factor-
graph optimization, as well, where scan match results be-
tween the robot and known locations in the map result in
factor potentials on the robot’s current position. An example
instance of such a match can be seen in Fig. 4. Additional
L2G factors can added based on GPS observations; these
present in our system, but weighted considerably less than
scan matching factors. Fig. 5 depicts a simple example of
a resulting factor graph. This formulation the system to
initialize the system’s prior based on GPS, switching to more
precise scan matching once initialized.

Solving the resulting graph yields the present and historic
L2G systems for the robot. One advantage of formulating
localization as a graph-solving problem is the ability to
incorporate concepts like max mixture edges into solutions.
Max mixture edges [1] allow the system to reject erroneous
observations, for example, due to a bad scan match or bad
GPS fix, preventing sudden, catastrophic shifts in the L2G
estimate.

Unfortunately, this formulation does not come without a
cost. The longer the vehicle is in operation, the more nodes
and factors accumulate in the graph, resulting in increasing
memory consumption and slower solve times. To prevent
excessive accumulation, we fix the maximum number of
nodes in the graph. When new observations would result
in this threshold being exceeded, the oldest observations are
removed from the graph, allowing the localization system to
operate in a fixed memory footprint and with stable solution
times.

V. EXPERIMENTAL RESULTS

We deployed our mapping and localization systems on
two platforms: the SmartCarts autonomous golf cart as well
as our MAGIC 2.0 mapping robot. Both platforms were
equipped with a 2.8 GHz Intel i7-4900MQ and 8 GB of
RAM, with code written in C.

A. Hazard and Structure Detection

We validate our 2D structure classification on two scenes:
one to demonstrate that our hazard detection threshold maps
well to real-world sloped obstacles, and another to validate
that we may classify a wide range of vertical structure, even
in the presence of partial occlusion.

To prove that our method is able to correctly distinguish
between real-world navigation hazards, we created a scene
containing ramps of slope 10, 14.5, and 16◦, pictured in
Fig. 1a. These angles were chosen to be near the hazard
threshold of 15◦. We expect the 10 and 14.5◦ ramp will
be marked as safe, while the 16◦ ramp will be marked
hazardous.

The robot captured the scene from several meters away,
viewing the ramps from their lower, ground-level ends.
Our terrain classifier successfully marked the 10◦ ramp as
drivable, and the 16◦ ramp as hazardous, as expected based
on the threshold. Due to sensor noise, parts of the 14.5◦ramp
were marked as hazardous as well. This demonstrates that
our hazard detection system is working correctly, but is not
entirely robust to noise.

We set up an additional scene to demonstrate that our
method can preserve information about partially occluded
structure, ensuring that useful scan matching features are
not removed from the map. The scene consisted of several
vertical structures ranging from 0.1 m to 1 m in height,
spaced evenly apart in ascending order by height, pictured
in Fig. 6a. The robot was placed to view this scene end on,
such that the taller structures were partially obscured by the
shorter structures.

Five bands of structure are clearly visible in front of the
robot in Fig. 6b. Only one band of LIDAR strikes fell on the
smallest object, a 0.1 m tall box. As a result, its vertical face
was not detected and it was only marked as hazardous, non-
slammable structure. However, the rest of the structure was
correctly identified as sufficiently vertical to be marked as
slammable and accurately placed in the grid map. This shows
that our algorithm can correctly identify and denote vertical
structure in the environment for use in 2D scan matching.

B. Map Compactness

One advantage of 2D storage is the compactness of
the map representation. Our occupancy grid implementation
stores class labels for each cell using a single byte, with
each cell corresponding to a 5×5 cm area in the world.
A prior map produced by our SLAM system can be seen
in Fig. 7. The map covers a region of size 74×85 m. For
scan matching purposes, we employ a version of the map
which preserves information about the structure visible from
a series of viewpoints from a previous traversal. The resulting
scan matching map has a memory footprint of under 4 MB.

For comparison, storing the raw 3D range returns cor-
responding only the selected viewpoints requires 16.3 MB.
Converting these returns to 3D points suitable for algorithms
such as ICP causes the storage needs to expand to nearly
100 MB.



(a) Scene with Vertical Occluded Structure (b) 2D Map

Fig. 6: 3D point cloud data allows the robot to observe partially occluded structure and incorporate it into its maps. In this scene, the
robot observes obstacles of increasing heights, ranging from 10 cm to 1 m. Vertical structure is denoted in black, hazardous terrain in red,
unknown in light gray, and observed free space in white.

(a) Open-Loop Trajectory (b) Corrected Trajectory

Fig. 7: Open-loop odometry during the traversal of the BBB
Building at the University of Michigan (a) compared to a trajectory
generated using our localization system (b). The robot’s open-
loop odometry drifts rapidly, but the localization system is able
to reliably recover the robot’s true pose within the building.

C. Indoor Localization

We tested our localization pipeline on our MAGIC 2.0
platform, a system designed for dual indoor/outdoor use.
The MAGIC 2.0 robot was equipped with a MEMS grade
gyro, wheel encoders, and a Velodyne VPL-16 mounted
approximately 0.6 m above the ground. Additionally, we use
a fiber-optic gyro (FOG) to acquire ground-truth orientation
estimates over the scale of a single pass of the building. We
generated a map of the 3rd floor our building and evaluated
the localization system based on a log of a separate, hand-
driven traversal.

Results for open loop pose vs. corrected global pose can
be seen in Fig. 7. Even as the open-loop odometry drifts, the
localization system is able to correct for these errors, keeping
the robot in the middle of the hallways at all times.

We numerically evaluate the impact of different parts of
our system against results from the FOG ground-truth, which
measures rotation about θ. By contrasting the FOG θ esti-
mate against the global one produced by localization when
employing different occupancy grid generation pipelines, we

0 0.01 0.02 0.03 0.04 0.05
Angular Error (rads)

0

20

40

60

80

100

120

F
re

qu
en

cy

Slope 70 °

Slope 80 °

Slope 85 °

Fig. 8: Frequency of angular errors in radians for localization based
on varying thresholds of vertical structure classification. If set too
high, insufficient quantities of structure are extracted to support
reliable scan matching. If set too low, too much structure is detected
to precisely constrain scan matching results.

identify the best combination of features to implement and
the appropriate parameterizations. To quantify the quality of
localization, we present distributions of theta error sampled
at discrete time steps and binned by steps of 0.005 radians
of angular error (roughly equivalent to a 0.25◦).

1) Slope Threshold: First, we examine the impact of var-
ious threshold settings for vertical structure detection in the
slope based method. We expect overly high and low values
to negatively impact scan matching results, resulting in low-
quality localization. We tested localization for a traversal of
our test environment with the structure threshold set to 70,
80, and 85◦. The resulting distributions of observed angular
errors can be seen in Fig. 8.

We find that the middle threshold of 80◦ performs best.
This is in line with our expectations. Maps constructed based
on the 85◦ threshold mark vertical structure less frequently,
likely due to sensor noise. The scan matcher, with less or
insufficient structure to constrain its matches, produces low
quality matches as a result. In contrast, the 70◦ threshold is



0 0.01 0.02 0.03 0.04 0.05
Angular Error (rads)

0

20

40

60

80

100

120
F

re
qu

en
cy

With Fill-In
Without Fill-In
Polar Coordinates

Fig. 9: Frequency of angular errors in radians for localization based
on a polar occupancy map, a Cartesian occupancy grid, and a Carte-
sian occupancy grid with fill-in applied. The polar map produces
more large-scale deviation from truth than it’s Cartesian counterpart.
However, the results for the Cartesian map are further improved by
filling in the regions between vertical slices of observations, aiding
the scan matching it achieving good alignments.

too permissive, marking non-vertical structure and sometimes
dilating vertical structure. The scan matcher depends on crisp
structure to acquire good matches, so this dilation hurts
match (and thus localization) quality.

2) Slope vs. Polar Popcount: Next, we examine the im-
pact of employing a compact, polar-coordinate-based pop-
count method vs. the slope method with and without fill-in.
We expect fill-in to boost performance, as distant observa-
tions can be more effectively matched by the scan matcher.
It is expected that the polar and Cartesian methods will
otherwise perform similarly.

Bin size parameters were tuned to offer the best-case
performances for each method. For the slope method, grid
resolution was set to 5 cm and the slammable threshold was
set to 80◦. Fill-in, when used, was performed for points
within 25 cm of each other. The polar popcount method was
set to have bins 0.01 rads (0.5◦) wide in θ and 5 cm in range.
Structure was marked in bins with at least 2 bits marked. The
resulting distribution of observed angular errors can be seen
in Fig. 9.

Fill-in has the expected impact on the slope-based method,
shifting the distribution of error closer to 0. Unexpectedly,
the polar popcount performs noticeably worse than both
slope methods, exhibiting a large tail of errors in excess of
0.05 rad (2.8◦). We hypothesize that this is due to the bin
size in the polar frame becoming more spread apart at large
distances. The natural spread in bins negatively impacts scan
matching, as long-range observations are smeared across
wider and wider areas. This manifests as the larger angular
errors seen in the results.

3) Slope Method vs. Open-Loop Odometry: Finally, we
present a comparison between our best-performing method
from the previous analysis and open-loop, MEMs odome-
try. Odometry-based estimates are initially aligned with the

0 0.05 0.1 0.15 0.2
Angular Error (rads)

0

20

40

60

80

100

120

F
re

qu
en

cy

Our Method
MEMs Odometry

Fig. 10: Frequency of angular errors in radians for localization for
open-loop odometry compared to our final localization system. The
orientation estimate provided by a MEMs-grade gyro drifts over
time, resulting in divergence from ground-truth of up to .155 rads
(9◦). In contrast, our corrected pose estimates are within .02 rads
(1.1◦) of truth 87% of the time.

global coordinate frame, but then allowed to drift naturally.
The results can be seen in Fig. 10.

The θ estimates produced based on the robot’s MEMs
grade IMU drift significantly over the 10 min traversal of the
building, accumulating a maximum error of nearly .155 rads
(.9◦). Conversely, 2D scan matching based on slope-based
structure maps is able to localize the robot within .02 rads
(1.1◦) of ground-truth 87% of the time, .025 rads (1.4◦) 97%
of the time, and in the worst case, deviates from ground truth
by just under 0.045 rads (2.5◦).

D. Computational Costs

We present timing data for the indoor dataset to evaluate
how frequently our localization system is able to update pose
estimates. Our method can be broken up into three distinct
stages: map building, scan matching, and graph solving.

To ensure a recent, 360◦ view of the area surrounding
the robot, we produce 2D scan matching maps after every
revolution of the Velodyne. At the maximum rotation rate
allowed by the hardware, a revolution is completed every
50 ms. We are able to process this data incrementally in
real time, resulting in less than 1 ms of delay between the
completion of a revolution and publication of a map.

The resulting maps are consumed by a scan matching
module, which in turn publishes its best estimate of the
robot’s current pose in the global map. Scan matching time
dominates the cost of our algorithm and varies greatly based
on the quality of the initial pose estimate. The median time
to acquire the best match is 140 ms, but times as low as
100 ms and as high as 180 ms are common. In the rare event
that no good match is found, the search can take as long as
400 ms.

Finally, the scan matching results are incorporated into a
localization graph which solves for the current and historical
robot poses. The graph is mostly sparse, resulting in a linear



growth in solve time. We find that solve time increases at a
rate of roughly 1 ms per 100 historical poses in the graph. By
limiting the size of the graph, we are able to keep solve times
under 5 ms. Based on this timing information, our system was
able to produce new L2G estimates at a rate of 5 Hz.

E. Outdoor Localization

We also tested our localization pipeline outdoors on our
SmartCarts autonomous golf cart platform. Our vehicle was
equipped with a FOG for yaw estimates, an encoder on the
left-rear wheel, and a Velodyne HDL-32E for scan matching.
We registered hand-annotated lanes against a SLAM map of
the environment gathered prior to testing. The robot was then
driven to a start location and tasked to drive autonomously
between several waypoints in the road network. A compari-
son of open-loop vs. localization corrected pose can be seen
for a portion of the trajectory in Fig. 11.

Our open loop odometry slowly accumulates error, even
with high-grade sensors like a FOG. Matching scans against
a 2D structure map corrects for this error, though, keeping
the SmartCart within its lanes throughout the test.

VI. CONCLUSION

Recent advances in localization for autonomous vehicles
rely on matching 3D structure in the environment, providing
robustness to the effects of weather and road maintenance.
However, the resulting maps are computationally costly to
match against and have large storage requirements.

In this paper, we present a localization system harnessing
the rich structural data of 3D LIDAR sensors, but with the
computational and storage efficiency of 2D methods. We
introduce two methods for extracting 2D structural infor-
mation from 3D LIDAR in support of 2D scan matching
as well as a novel localization method based on Graph-
SLAM algorithms. We quantify the performance of these
methods in a real-world system, evaluating predicted orien-
tation estimates against high-quality estimates produced by
a FOG. Our system consistently produces accurate position
estimates, even in the presence of partial occlusions and
dynamic obstacles.

REFERENCES

[1] E. Olson and P. Agarwal, “Inference on Networks of Mixtures for
Robust Robot Mapping,” in Proceedings of Robotics: Science and
Systems (RSS), Sydney, Australia, July 2012.

[2] N. Sunderhauf and P. Protzel, “Switchable Constraints for Robust Pose
Graph SLAM,” 2012.

[3] S. Thrun, W. Burgard, and D. Fox, “A Real-Time Algorithm for
Mobile Robot Mapping With Applications to Multi-Robot and 3D
Mapping,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). San Francisco, CA: IEEE, 2000.

[4] S. Nobili, S. Dominguez, G. Garcia, and M. Philippe, “16 Channels
Velodyne Versus Planar LiDARs Based Perception System for Large
Scale 2D-SLAM.”

[5] A. Diosi and L. Kleeman, “Fast Laser Scan Matching Using Polar
Coordinates,” The International Journal of Robotics Research, vol. 26,
no. 10, pp. 1125–1153, 2007.

Fig. 11: A trajectory based on open-loop odometry on a FOG-
equipped golf cart (blue) vs. our localized trajectory (green). Struc-
ture from the 2D prior map is shown in yellow. Noisy open-loop
odometry causes errors in pose estimation, but 2D scan-matching
results are sufficiently accurate for our localization system to correct
the errors, keeping the vehicle safely within its lane.

[6] E. B. Olson, “Real-time correlative Scan Matching,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 4387–4393.

[7] P. J. Besl and N. D. McKay, “Method for Registration of 3-D Shapes,”
in Robotics-DL tentative. International Society for Optics and
Photonics, 1992, pp. 586–606.

[8] J. Serafin and G. Grisetti, “NICP: Dense Normal Based Point
Cloud Registration,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, 2015, pp. 742–749.

[9] F. Moosmann and C. Stiller, “Velodyne Slam,” in Intelligent Vehicles
Symposium (IV), 2011 IEEE. IEEE, 2011, pp. 393–398.

[10] R. W. Wolcott and R. M. Eustice, “ Visual Localization Within LIDAR
Maps for Automated Urban Driving ,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Chicago,
IL, USA, September 2014, pp. 176–183.

[11] ——, “ Fast LIDAR Localization Using Multiresolution Gaussian
Mixture Maps ,” in Proceedings of the IEEE International Conference
on Robotics and Automation, Seattle, WA, USA, May 2015, pp. 2814–
2821.

[12] M. Cummins and P. Newman, “Appearance-only SLAM at Large Scale
with FAB-MAP 2.0,” The International Journal of Robotics Research,
vol. 30, no. 9, pp. 1100–1123, 2011.

[13] T. Sattler, B. Leibe, and L. Kobbelt, “Fast Image-based Localization
Using Direct 2D-to-3D matching,” in Computer Vision (ICCV), 2011
IEEE International Conference on, Nov 2011, pp. 667–674.

[14] T. Korah, S. Medasani, and Y. Owechko, “Strip Histogram Grid
for Efficient LIDAR Segmentation from Urban Environments,” in
Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
IEEE Computer Society Conference on. IEEE, 2011, pp. 74–81.

[15] R. D. Morton and E. Olson, “Positive and Negative Obstacle De-
tection using the HLD Classifier,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
September 2011.

[16] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil,
D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun, “Junior: The Stanford
entry in the Urban Challenge,” J. Field Robot., vol. 25, no. 9, pp.
569–597, 2008.


