
Monte-Carlo Policy-Tree Decision Making

Acshi Haggenmiller1 Edwin Olson1,2

Abstract— In this paper, we propose Monte-Carlo Policy-Tree
Decision Making (MCPTDM), an uncertainty-aware frame-
work for high-variance planning problems with multiple dy-
namic agents. Planning when surrounded by multiple uncertain
dynamic agents is hard because we cannot be certain of either
the initial states or the future actions of those agents, leading to
an exponential explosion in possible futures. Many important
real-world problems, such as autonomous driving, fit this model.

To address these difficulties, we combine Multi-policy Deci-
sion Making (MPDM) and Monte Carlo tree search (MCTS)
and perform policy tree search with marginal action cost (MAC)
estimation and repeated belief particles. We first design a syn-
thetic experiment to evaluate these novel improvements in isola-
tion. Then we evaluate the complete framework in a self-driving
car simulation experiment and compare it against MPDM
and Efficient Uncertainty-aware Decision Making (EUDM)
methods. We release our complete source code for replicating
our experiments and results.

I. INTRODUCTION

Planning with uncertainty is difficult because uncertainty
compounds and marginalizing over each source of uncer-
tainty is exponential in the number of possibilities. First, the
space of possible action sequences increases exponentially
with the length of the planning horizon and the number of
dynamic agents. Second, uncertainty about the future world
necessarily increases the further into the future we plan.
The first difficulty poses computational challenges, while the
second means that continuous re-planning is necessary to
take advantage of new information.

Planning under uncertainty is often modelled as a Partially
Observable Markov Decision Process (POMDP) [1][2], with
a discrete set of states, actions, and observations, and with
probabilistic state transition, observation, and reward func-
tions. Exactly solving a real-world POMDP is intractable
because of the exponential nature of the probabilistic belief
space. Tools that approximately solve the exact POMDP
are still only tractable for small discrete problems. More
realistically, this computational cost can be made tractable
through use of heuristics [3], sampling approaches [4][5], or
domain-specific modeling simplifications [6]. Even so, the
number of future scenarios to consider is still an exponential
function of the number of possible actions (branching factor)
and the length of the horizon (search depth). A brute-force
tree search over all possible plans will only be possible when
the action space is both discrete and small, the horizon is
short, and the time discretization is coarse.

The Multi-Policy Decision-Making [7] (MPDM) frame-
work is helpful for these kinds of planning problems because

1Robotics Institute, University of Michigan
2Computer Science and Engineering Department, University of Michigan
{acshikh,ebolson}@umich.edu

computation time is linear in both the number of policies and
the length of the planning horizon. Instead of planning in
action space and directly considering each possible control
input, MPDM plans in policy space and only considers
selecting from high-level closed-loop policies that encode
domain-specific behaviors. MPDM handles uncertainty in
other dynamic agents by sampling their states and assuming
that they are also following policies, again limiting the
computational complexity. By having policies that encode the
breadth of reasonable behaviors for both the ego (the agent
that we are planning for) and other agents, MPDM takes
advantage of prior domain knowledge to avoid searching
extremely unlikely and unrealistic portions of the complete
search tree. Policies can also be used for both discrete and
continuous action spaces. Besides both the ego agent and
other agents being restricted to following a policy, MPDM
is also limited in that it does not consider the possibility of
switching policies within the planning horizon. This makes
certain larger-scale behaviors, such as an autonomous vehicle
passing another vehicle and then returning to its original lane,
much more awkward to handle.

Efficient Uncertainty-aware Decision-Making (EUDM) [8]
extends MPDM to help get around this limitation by using a
tree search to allow up to one policy change at some future
point in the planning horizon and also by using heuristics
to identify situations with the obstacle agents that may lead
to dangerous situations. This helps EUDM more effectively
marginalize over uncertainty in the initial states and plans of
the other agents. Even with policies, however, the number of
possible initial belief states is still exponential in the number
of obstacle vehicles to plan around.

We make further improvements to MPDM to get around
the limitation of a single policy change and necessity of
using critical-situation heuristics by combining insights from
both MPDM and Monte Carlo Tree Search (MCTS) along
with additional novel modifications that take advantage of
the unique cost-structure and focus on safety in autonomous
driving and other similarly structured tasks.

The principle contributions of this paper include:
1) Monte-Carlo Policy-Tree Decision Making

(MCPTDM), which allows an agent to efficiently
compute policies in partially-observable and stochastic
problems having either discrete or continuous action
and state spaces. It does this by composing its policy
from a sequence of simpler policies.

2) Marginal action cost (MAC) estimation, which im-
proves upper confidence bound (UCB)-based tree ex-
ploration and final action selection.

3) “Particle repetition”, which improves fairness in cost

estimation by reducing the effect of unlucky or unusual
initial conditions.

4) Validation of our MAC estimation and particle repeti-
tion improvements on an abstract task.

5) Evaluation and comparison with EUDM [8] on an
autonomous self-driving task.

6) Openly-released source code capable of reproducing
all the figures and evaluation results from this paper for
full replication of our results and further extensions.

II. RELATED WORK

In this section, we categorize previous work into several
families.

Many of these works use the Partially Observable Markov
Decision Process (POMDP) [1][2] to frame their method-
ology. A POMDP consists of finite sets of states, actions,
and observations, as well as stochastic transition, reward,
and observation functions that may depend on both the
current unknown state and chosen action. Littman’s POMDP
tutorial [9] is a friendly introduction to the topic.

We first show what these POMDP components might
represent in a self-driving vehicle scenario. While the poses
of the ego-vehicle and other vehicles can be directly ob-
served, the intentions of other vehicles cannot, so our total
system state is non-observable. Since the total state cannot
be observed, a belief that can represent probabilities for
each possible state must be maintained instead, and forms
the de facto state used in planning. As all the vehicles
execute their actions, there may be noise attributable to
the environment (road surface, wind, etc.) or the vehicles
themselves (limited precision engine control and steering),
giving us a stochastic transition function. The progress our
vehicle makes towards some goal location and keeping a
safe distance from other vehicles to avoid crashing make
up the reward function. Each vehicle has control over their
continuous acceleration, braking, and steering control inputs,
which form the action space. The ego vehicle’s sensors
continually make observations of the other vehicles, but can
only infer the intentions of those vehicles from their position
over time, making this problem partially observable.

Along with many other real-world problems, planning for
self-driving vehicles can be modelled as a POMDP. Even
when a POMDP model is not used explicitly, it can be a
helpful framework for comparing and discussing methods.

A. Directly solving the POMDP

Early work, like the seminal paper from Åström [1],
focused on solving for the optimal belief-space regions
and the actions they map to, as well as extending from
these finite horizon problems to infinite horizon problems,
which sometimes required finding approximate or ε-optimal
solutions [10]. Even with small problems, these approaches
were not very efficient, with one algorithm solving a machine
replacement problem with two states and two actions in 110
seconds [11].

A more recent work on directly solving a POMDP, “Grasp-
ing POMDPs” [6] from Hsiao et al., constructs reduced-size

abstract state spaces for simple robot manipulation tasks by
taking advantage of compliant motions (such as sliding along
a surface). For a two-dimensional grasping task, the authors
formed a 408-state POMDP and solved it in less than 10
minutes with a general solver.

Where possible, direct solutions to a POMDP are theoret-
ically robust, but few practical problems are simple enough
to be solved like this.

B. Simplification through macro-actions

A macro-action is a closed-loop policy with a termination
condition that can be selected by an agent as an option in
addition to its primitive actions, and were initially introduced
as a tool to speed up reinforcement learning [12].

Theocharous and Kaelbling [13] employ macro-actions to
approximately solve a POMDP. They discretize the belief
space into a sparse dynamic multi-resolution grid and use
hand-crafted macro-actions, like go-to-end-of-corridor, to
avoid producing and evaluating non-productive intermediate
states. Macro-actions have also been generated online, such
as in PUMA (Planning under Uncertainty with Macro-
Actions) [14], which generates macro-actions based on sub-
goals of reward and information gain and uses anytime
refinement to progressively increase the resolution of their
macro-actions.

Macro-actions share many similarities with the policies
used in MPDM in that both are larger closed-loop abstrac-
tions over primitive actions, reducing the effective size of the
search space in planning algorithms. The primary difference
is that macro-actions have termination conditions and must
still be composed, sometimes even with primitive actions. In
multi-policy, policies do not necessarily have a termination
condition nor need to be composed together during planning.
In this sense, these policies are less flexible than macro-
actions, but allow for faster planning in exchange for this
lower flexibility.

C. Analytical uncertainty propagation with Gaussians

In some cases, a POMDP can be linearized in such a way
that uncertainty can be represented and propagated as simple
Gaussian distributions. In these cases, planning decisions can
be made directly with respect to the analytical likelihood of
acceptable outcomes.

For example, in linear-quadratic Gaussian motion planning
(LQG-MP) [15], the authors linearize and jointly model
motion planning, control, and state estimation with Gaussian
uncertainty. This enables the planner to precompute the
robot’s covariance and potential deviation from its nominal
path and choose the path most likely to succeed from some
set of candidates. Similarly, FIRM (feedback controller-
based information-state road map) [16] precomputes a prob-
abilistic roadmap “FIRM graph”, where each directed edge
is a linear quadratic Gaussian (LQG) feedback controller
designed to drive the belief into the neighborhood of the
next node. So too the rapidly-exploring random belief tree
(RRBT) [17], which iteratively builds and refines a tree of
possible trajectories with local LQG feedback control to

propagate state covariance, maintain chance-constraints, and
avoid collisions.

By taking advantage of the composability of Gaussians
with LQG control, these methods significantly factor out
uncertainty. While this is a big advantage, modeling all
uncertainty as Gaussian is not suitable for highly non-linear
problems like autonomous driving.

D. Sampling-based approaches

In contrast to the computational gains possible when prop-
agating Gaussians, sampling-based approaches recognize that
arbitrary probability distributions can be approximated with
enough random samples. The true value of some uncertain
process can be determined by using sampling to marginalize
over each source of uncertainty involved.

An early reinforcement learning approach extended the use
of Monte Carlo sampling from MDPs to POMDPs [4], al-
ternating between estimating Q-values for the current policy
and then improving the policy accordingly.

Because even representing the whole state space to store
probabilities or Q-values can be intractable in larger prob-
lems, most approaches only represent parts of the space
that they have explicitly explored. The Infinite POMDP
(iPOMDP) algorithm [18] assumes that the target POMDP
has an unbounded discrete state space and then extends an
infinite hidden Markov model (iHMM) [19] to also handle
actions and rewards, estimates belief with an approach based
on beam-sampling [20], and uses a stochastic forward search
for action selection. Partially Observable Monte Carlo Plan-
ning (POMCP) [5] approximately solves a POMDP given
only a black-box simulator with Monte Carlo sampling,
an unweighted particle filter to approximately represent the
belief state, and MCTS to explore the action space.

For multi-agent scenarios, factored-value POMCP [21] ex-
tends POMCP to multi-agent problems by keeping separate
trees for each factor (which may contain 1 or more agents)
and applying the variable elimination algorithm [22] with
their “mixture of experts optimization” to choose actions.
Alternatively, decentralized Monte Carlo tree search (Dec-
MCTS) [23] performs multi-robot planning by having each
robot alternate between stages of growing/deepening a Monte
Carlo search tree and updating the probability distributions
of other robots.

Sampling is an effective way to explore high-dimensional
spaces and to marginalize over uncertainty. Effective plan-
ning often only needs a representative sample of situations.
In MCPTDM, we also use sampling to marginalize over
uncertainty in our belief.

E. With neural-network learning

To solve a POMDP, a neural network may be trained with
inputs corresponding to the ego agent’s state and beliefs and
with a loss function based on the cost or reward. By training a
neural network to solve a POMDP, the network can hopefully
encode expert rules and heuristics without the algorithm
itself needing to specify this domain knowledge. This allows
the algorithm to maintain more generality by only needing

domain-specific knowledge for high-level objectives through
a reward or cost function.

Deep Mind’s Alpha Zero [24] plays Go at an expert-
level by combining MCTS with deep learning networks
for evaluating board positions and selecting moves. As a
fully-observable game with a discrete action space, Go is
not a perfect analog for robotics applications, but its large
search space and difficulty evaluating moves and states make
it very interesting. A0C [25] extends Alpha Zero to work
in continuous action spaces by using progressive widening,
by sampling and selecting promising new with the policy
network, and by training the policy network to produce a
valid probability distribution from the relative MCTS results
by using the loss to enforce that it integrates to 1.

When actually applied to partially observable scenarios,
most methods use deep learning for only part of the method.
Ding et al. [26] use a recurrent neural network to examine
multi-agent interactions and predict behaviors before they
can be directly observed. Paxton et al. [27] use reinforcement
learning to learn both low-level control policies as well as
high-level goal-directed “option” policies to search through
with MCTS; they use extracted feature inputs and a single
hidden layer. Mukadam et al. [28] use deep Q-learning to find
a high-level tactical lane-changing strategy that determines
when to elect lane changing or acceleration actions to be
performed by a low-level controller.

Because many neural network approaches focus on learn-
ing policies, they could be integrated into a multi-policy
framework. In this paper, however, we use simpler policies.

F. Multi-policy approaches

In Multi-Policy Decision-Making (MPDM) [7], the ego
agent elects one policy from a small set of high-level closed-
loop policies and also models the other dynamic agents
with these same policies. Monte Carlo sampling is used to
marginalize over uncertainty in the state and future policies
of the obstacle agents. In each Monte Carlo sample, all the
agents are forward simulated together to capture closed-loop
interactions [29] and the best ego agent policy is elected from
the cumulative results. Further work in the MPDM frame-
work focuses on discovering risky configurations through
stochastic gradient descent of a heuristic cost function [30]
and back-propagation techniques [31].

Other approaches incorporate multi-policy ideas into a
larger framework. Zhou et al. [32] use a POMDP solver to
determine optimal acceleration/deceleration actions for each
obstacle agent policy and a particle filter to estimate the
probability of each policy-agent pair and then combine this
with model predictive control for the ego agent. In Efficient
Uncertainty-aware Decision Making (EUDM) [8], MPDM
is extended with a limited tree search and critical-scenario
heuristics, as mentioned in the introduction.

Our proposed method is similar to EUDM because we
also extend MPDM by modifying the policy search process
and permitting policy changes in the planning horizon.
However, we go farther in searching over arbitrary sequences
of policies, rather than allowing only a single change in

policies. To make the larger search space tractable requires
reformulating the search into a MCTS-type tree search, but
where instead of evaluating actions at each decision point,
we evaluate closed-loop policies.

III. SYNTHETIC ABSTRACT SCENARIO

We first examine Monte-Carlo Policy-Tree Decision Mak-
ing (MCPTDM) with a synthetic scenario and experiments
that model an abstract form of the self-driving scenario we
will examine later in this paper. After describing this scenario
in detail, we examine the effects of changing the expected-
cost rule used by UCB for balancing the exploration-
exploitation tradeoff and for selecting the final best action.
We also examine the effects of various improvements to
UCB. Finally, we explore the idea of fairness with particle
repetition, helping to mitigate the effects of “unlucky” initial
conditions, where poor outcomes are more attributable to the
initial conditions than the specific plan being evaluated. In
a self-driving situation, for example, an “unlucky” particle
might include nearby vehicles having intentions that box the
ego vehicle in while another vehicle performs a dangerous
lane-change; boxed in like this, it doesn’t matter which
policy the ego vehicle chooses, even though this random
coordination is very unlikely.

A. Problem statement

We consider an abstract version of an autonomous driving
task with five policy (or action) choices, a time horizon split
into four segments, and costs related to avoiding crashes and
close calls and making forward progress.

While costs associated with making forward progress
are likely to be relatively smooth, costs around safety and
potentially crashing are more discontinuous. To model a
more complex cost distribution, we use a mixture of two
Gaussians. Gaussian mixtures have prior use in compactly
approximating real-world events [33][34].

In addition, in a self-driving scenario, a lot of the uncer-
tainty is in the initial belief about the behavior and intentions
of other vehicles. Specific initial conditions that might be
dangerous for one ego-agent policy are likely to be dangerous
for the other policies as well. To model this “risky situation”
correlation, we store the initial conditions in what we call
belief particles. If the same belief particles are propagated
through different paths in the tree, we should see correlated
responses.

This synthetic scenario is effectively a Markov Decision
Process (MDP) with a fully observed/known problem model
and with stochastic rewards. The planning problem is to
effectively explore the scenario as a black-box model in
simulation before electing a final action choice.

In order to determine the empirical performance of our
method, we perform a synthetic experiment. We construct
a tree (of depth 4 and branching factor 5) and assign
each node a random cost probability distribution that is a
mixture of two Gaussian distributions with random mean
µi, standard deviation σi, and mixture weight wi, where the
mixture weights sum to one. Because our model includes

only positive costs, we saturate these Gaussian costs to be
in the range [0, 2µi] so that the mean is not changed by the
saturation.

When running a trial, we first sample a “belief particle”
from the “initial conditions” so that all costs using this
belief particle will be correlated. We do this by sampling
z-scores from the standard Gaussian distribution (a z-score
is a normalized Gaussian sample, where z = (x−µ)/σ). We
also sample a weight threshold t from 0 to 1 that we will use
to select between the Gaussian mixture components. With
these z-scores and threshold z1, z2, t from the belief particle
known, the cost c for all node distributions would be both
correlated and deterministic:

c =

{
constrain(µ1 + z1σ1, 0, 2µ1) t ≤ w1

constrain(µ2 + z2σ2, 0, 2µ2) t > w1

(1)

constrain(x, l, h) =

l x < l

h x > h

x otherwise

(2)

For each trial, after sampling a situation, we use UCB (or
one of its variants) with the selected expected-cost rule to run
that situation through the tree. After running all trials in our
computational budget, we choose the lowest expected-cost
top-level action as our result. We calculate the true expected
costs of both the best path through the tree and also the
best path starting from our chosen action. Our regret for
this choice is then the chosen-action best-path expected cost
minus the overall best-path expected cost.

When sampling node distributions, Gaussian means and
standard deviations are all sampled uniformly and indepen-
dently from 0 to 100.

The true marginal expected cost of any node i is then:

E(c̄i) = wi,1µi,1 + (1− wi,1)µi,2 (3)

B. Expected-cost estimation with marginal action costs
(MAC)

In this section, we motivate and describe a focus on
marginal action costs (MACs), which allow us to make a
more informed exploration of the search tree as compared
to just using terminal costs. To put this idea in context, a
common application of MCTS is for board games such as
Go [24] which involve many turns, a large branching factor,
determinism, and a reward/cost assigned only when a termi-
nating condition is reached (e.g. win/loss). By comparison,
in a non-deterministic self-driving car scenario, while there
may be a long-term goal (e.g. a destination to reach), the
most important goal of the planner is to maintain safety at
all times. To this end, MACs allow the search to distinguish,
for example, between a collision at depth 1 and depth 4,
and due to the high cost of collisions, the entire sub-tree
below a collision can be effectively pruned away. This is only
possible when the collision can be attributed to a specific
node.

The expected cost of MCTS nodes may be used at two
different points in MCTS. In the first case, they are inputs

A
True marginal and intermediate costs

M = 0
I = 0

M = 20
I = 20

M = 2
I = 22

M = 4
I = 24

M = 4
I = 4

M = 21
I = 25

M = 3
I = 7

B
Sampled intermediate costs

0, 40,
0, 0

x = 10

2, 42
x = 22

0, 4
x = 2

3, 5,
2, 2

x = 3

22, 28
x = 25

5, 5
x = 5

C
Classic expected-cost

13.5

12

22 2

15

25 5

D
Expectimax expected-cost

2

2

22 2

5

25 5

E
Lower-bound expected-cost

5

10

22 2

5

25 5

F
Marginal expected-cost

6

12

2 2

6

21 3

Fig. 1: Illustration and comparison of four different rules for estimating the expected-cost of an MCTS-style node. Each rule’s selected
best path is in bold. For this example, only the “lower-bound” and “marginal action cost” (MAC) rules choose the optimal path. A: Each
action choice and node has some cost distribution. We label the mean of each node’s distribution as the “true marginal cost” M of that
node. We also label the “true intermediate cost” I of that node, which is the sum of marginal costs leading to that node. The optimal
choice in this example would be to choose actions right-right, resulting in a total expected cost of only 7. B: We run 2 trials for each
leaf node, recording the intermediate costs of each trial after each action. In a more classical MCTS formulation, costs (or rewards)
would only be known at the leaf nodes. We also label the mean intermediate cost at each node. For the two middle nodes, the first two
costs are associated with the left child and the second two costs are associated with the right child. C: Under the “classic” expected-cost
rule, we use the mean value of every trial under a node, ignoring the intermediate costs of non-leaf nodes. D: An optimistic alternative
“expectimax” is to set the expected-cost of a node to be equal to the best expected-cost of its children. This makes many actions appear
much better than before. E: The “expectimax” rule is overly optimistic when a trial gets lucky and avoids a large intermediate cost in a
parent node. We can use the mean parent intermediate cost as a “lower bound” on the expected-cost. F: Alternatively, we can also attempt
to directly estimate the original “marginal action cost” of reaching each node from the intermediate costs. Then we set the estimated-cost
to the marginal cost plus the best estimated-cost of a child.

to the UCB selection algorithm for guiding the exploration-
exploitation tradeoff in search. In the second case, after the
computational budget for MCTS trials is met, they may
be used for final action selection, to select the final top-
level action to execute. Besides using the expected-cost, a
common alternative is to choose the most-visited action as
the final choice [35]. A slight improvement may be found by
continuing to search until both these measures agree [36] and
so we use that combined “max-robust child” variation in this
paper, putting a limit of 20% on the number of additional
trials we might run. This explicit limit is only necessary
because some of the parameter sweeps we perform include
degenerate cases that do not converge.

1) Traditional MCTS expected cost estimation: The ex-
pected cost of an MCTS node is normally the mean of each
trial that has passed through it [37]:

c̄i =
1

Ni

Ni∑
k=1

ci,k (4)

where c̄i is the expected cost of node i, Ni is the total number
of trials that have passed through node i, and ci,k is the kth
final trial cost that passed through node i. We call this rule
“classic”. (See Fig. 1 C.)

Instead of just taking the mean of all terminal costs from
all child nodes, we can optimistically take the best (lowest)
child cost at each controlled choice, only averaging over the

multiple stochastic costs at leaf nodes. The expected costs
then bubble up from the bottom of the tree:

c̄i =

{
minj∈Children(i) c̄j i is a branch
1
Ni

∑Ni

k=1 ci,k i is a leaf
(5)

This rule is called “expectimax” [38] (although we are
minimizing costs here instead of maximizing rewards) and
was originally devised in the context of game tree search
where the opponent plays stochastically. It is considered a
generalization of minimax search, where the opponent is
assumed to play optimally [37]. (See Fig. 1 D.)

2) Taking advantage of known intermediate costs: We
observe that the above rule can be over-optimistic in some
cases. For example, imagine a node corresponding to a risky
action that has a 50% chance of observing a high cost, and
that has two child nodes, neither of which impose any costs.
If we run a trial for each of these children and get a high
cost for one and zero for the other, we would optimistically
choose the best option and assign an expected cost of zero
to the parent node, even though the true expected cost is
high. However, when we have intermediate costs for each
node, we know that the high cost is attributable to the parent
node and not to either of the children. We should not be
deceived into believing that a low cost path exists for one of
the children since the parent cost applies to both. We devise
a new rule that takes the cost of the best child and applies

a lower bound of the mean partial/intermediate cost of the
parent node:

c̄i = max

(
p̄i,

{
minj∈Children(i) c̄j i is a branch
0 i is a leaf

)
(6)

where p̄i is the mean partial/intermediate cost of node i. We
call this rule “lower bound”. (See Fig. 1 E.)

3) Marginal action costs (MAC): Taking this idea of using
additional information from intermediate costs even further,
we can also directly calculate and assign marginal costs to
each node and use the sum of mean marginal costs along the
best path through the tree as the total expected cost:

c̄i = m̄i +

{
minj∈Children(i) c̄j i is a branch
0 i is a leaf

(7)

where m̄i is the mean marginal cost of node i, equal
to the mean intermediate cost of node i minus the mean
intermediate cost of the parent, if any. We notice a similarity
to Q-learning in that the total expected value combines an
immediate value with the best child node/successor state
expected value. We call this rule “marginal” or MAC. (See
Fig. 1 F.)

C. Fairness and particle repetition

At the start of each Monte Carlo trial we sample a set of
initial conditions. This particle then takes some path through
the tree, influencing the final cost of the trial. Some of these
particles may be either lucky or unlucky, making the actions
and path they take look unfairly better or worse than they
actually are. For example, if all the obstacle vehicles either
simultaneously avoid or crowd the ego vehicle, such that
no matter the ego vehicle’s policy choice, there is either no
possible crash or an inevitable crash. The idea is that with
enough trials and particles, these effects will average out to
be fair in the end, resulting in a good outcome. However,
when the number of trials is computationally limited, it may
help if we intentionally repeat particles along different paths
through the tree to reduce any bias resulting from this good
or bad luck.

We do this by recording all particles, the paths they take,
and their terminal costs (because our initial conditions are
compact, this does not add up to a significant amount of
information). Then, after a top-level action has been elected
for the next trial, we first check if there is a particle that
has not gone down this path before. If so, we repeat this
particle instead of sampling a new one. If there are multiple
particles, we chose the one with the highest cost. We note that
although it would be possible to perform particle repetition
at any depth of the tree, we only found it worthwhile at the
top level.

Once the computational budget is large enough, repeating
particles for fairness will no longer be necessary. Instead,
it may be more effective to only draw new particles to
better marginalize uncertainty. While for smaller numbers of
Monte Carlo trials it is helpful to repeat particles as much as
possible, for large numbers it may be best to not repeat at all.

We find that the best number of particles to repeat appears
to be inversely proportional to the total number of trials in
our budget. This means that for an any-time implementation,
it would be best to have an estimated budget before starting.
We use a repetition constant to set the maximum number
of particle repetitions to perform as the repetition constant
divided by the number of trials in our budget.

Algorithm 1: The MCPTDM algorithm, where the
inputs include initial state s0, uncertainty belief b,
and policy set P . We use p for policy, s for belief
sample/initial conditions particle, n′ for a child node
of n, m for a marginal action cost, mn for the set of
marginal action costs observed by node n, and c̄n for the
expected cost of node n. In practice, an implementation
may want to limit the number of repeated particles.
A system may also want to specify a preference, in
addition to UCB, to determine expansion order when
multiple children are completely unexplored; we prefer
to first explore the child with the same policy as the
parent.

function CHOOSEPOLICY(s0, b, P)
n← CREATENODE(s0)
k ← 0
for k < trial budget ∨ continue for max-robust child
do

RECURSE(n, DRAWBELIEFSAMPLE(b), P)
k ← k + 1

end
return arg min

p
c̄n′ for child n′ with policy p

function RECURSE(n, s, P)
if depth of n ≥ max depth then

return
end
if n not expanded then

// Add child nodes at depth+1 for each policy in P

EXPAND(n, P)
end
n′ ← KL-UCB(n)
if depth of n = 0 then

// Save/retrieve particles before forward simulation
if n′ has unplayed particles then

s← WORSTUNPLAYEDPARTICLE(n′)
else

SAVEPARTICLE(n, s)
end

end
m← FORWARDSIMULATE(n′, s)
mn′ ← mn′ ∪ {m} // Track marginal costs
RECURSE(n′, s, P)
c̄n ← MACEXPECTEDCOST(n, s)

D. Experiments

To evaluate and compare the different expected-cost rules,
UCB variations, and particle repetition, we perform a variety
of parameter sweeps. When not sweeping over Monte Carlo

trials, we instead marginalize the number of trials with ten
powers of two from 8 to 4,096. We perform enough complete
runs of the algorithm to show significant results in the
figures, where error bars indicate plus or minus one standard
deviation of the mean (standard error).

0 -6.8 -10 -15 -22 -33 -47 -68 -100 -150 -220 -330 -470 -680 -1000
UCB constant factor * 0.1

15

20

25

30

35

40

Re
gr

et

Regret by UCB constant factor and expected-cost rule
UCB expected-cost rule

Classic
Expectimax
Lower bound
MAC (proposed)

Fig. 2: Parameter sweep of UCB constant for each expected-cost
rule, showing that the marginal action cost (MAC) and “classic”
rules perform best.

1) On expected-cost rules: We start by sweeping the
UCB constant (a free parameter) for each expected-cost rule.
Fig. 2 shows that the classic and MAC rules consistently
outperform the expectimax and lower-bound rules, and that
these differences persist even for large UCB constants which
may encourage almost pure exploration. We reason that these
differences reflect the effect of the expected-cost rules not on
exploration, but on final action selection.

To tease apart how the expected-cost rules influences UCB
and final action selection, we repeat the experiment, this
time always using MAC for final action selection, but still
varying the expected-cost rule for UCB. In Fig. 3 we see this
hypothesis confirmed, that the MAC rule is most important
for final action selection and that most of the expected cost
rules work just as well with UCB. We also include a uniform
(pure exploration) rule for comparison.

We also compare expected-cost rules by computational
budget (number of Monte Carlo trials) in Fig. 4. Each rule
uses the best UCB constant for it as found in Fig. 3 and
all use MAC for final action selection. We notice that MAC
converges close to zero mean regret much faster than the
other rules.

2) On UCB variations: Acknowledging that there are
many enhancements and alternatives to UCB, we also wanted
to see if one of these would be able to improve perfor-
mance. For this purpose we also implemented UCB-V [39],
UCB(δ) [40], and KL-UCB and variation KL-UCB+ [41].
We performed parameter sweeps for each UCB variation to
choose the parameters that produced the lowest regret for
each, and then compared them. In Fig. 5 we see that each
improved variation performs fairly similarly and significantly

0 -6.8 -10 -15 -22 -33 -47 -68 -100 -150 -220 -330 -470 -680 -1000
UCB constant factor * 0.1

10

15

20

25

30

35

40

Re
gr

et

Regret by UCB constant factor and UCB expected-cost rule
UCB expected-cost rule

Classic
Expectimax
Lower bound
MAC (proposed)
Uniform

Fig. 3: Parameter sweep of UCB constant for each UCB expected-
cost rule, while using MAC for final action selection. We see that
as UCB values increase, each rule’s performance approaches that
of uniform/pure exploration.

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40
Re

gr
et

Regret by # monte carlo trials and UCB expected-cost rule

UCB expected-cost rule
Classic
Expectimax
Lower bound
MAC (proposed)
Uniform

Fig. 4: Parameter sweep of Monte Carlo trials for each UCB
expected-cost rule, while using MAC for final action selection.
MAC achieves a low regret faster than the other rules. Thanks to
also using the “max-robust child” rule to make a final decision at
a good time, uniform exploration also does surprisingly well.

better than UCB, although the relative differences start to
widen with the highest numbers of trials. We use KL-UCB
rule for the remainder of this paper because of this advantage.

3) On particle repetition: In Fig. 6 we sweep the rep-
etition constant and show the relative regret, normalizing
by the regret of the w/o-repetition case. For most of the
cases, we see that improvements saturate when particles are
being repeated as much as possible. Intuitively, we would
expect that particle repetition would become less important
as the number of particles increases, since the effects of
individual “unlucky” particles would be mitigated by the
large number of particles. We see exactly this behavior for
1,024 Monte Carlo trials in our experiment. Because we are
plotting relative regret, the smaller the absolute regret, the

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40

Re
gr

et
Regret by # monte carlo trials and UCB variation

UCB variation
UCB
UCB-V
UCB-delta
KL-UCB
KL-UCB+
Uniform

Fig. 5: Parameter sweep of Monte Carlo trials for each UCB
variation, using MAC for expected-cost and final action selection.
All the improved rules outperform UCB in most cases by about
the same margin as UCB outperforms uniform exploration. KL-
UCB consistently performs best, with KL-UCB+ performing very
similarly.

larger the error bars. See the absolute regret trends in Fig. 7
where we use a repetition constant of 216.

w/o 10 11 12 13 14 15 16 17 18 19
log2(repetition constant)

0.9

1.0

1.1

1.2

1.3

Re
la

tiv
e

re
gr

et
, r

el
at

iv
e

to
 w

/o
 re

pe
tit

io
n

Relative regret by repetition constant and # monte carlo trials
Monte Carlo trials

8
16
32
64
128
256
512
1024

Fig. 6: Plot of relative regret (normalized by the no-repetition case),
the particle-repetition constant, and the number of trials, showing
that particle repetition is strictly beneficial at least up to 256 trials,
with up to about a 10% reduction in regret. Note that the cases with
1,024+ trials all have very low absolute regret (see Fig. 7).

4) Cumulative improvement: Finally we perform an abla-
tion study in Fig. 7 to compare a traditional MCTS search
with UCB and “max-robust child” final action selection to
our enhanced method that adds in KL-UCB, MAC expected-
cost estimation, and finally particle repetition. Each addition
significantly reduces regret, although at different points along
the curve.

Overall, our total combined method with MAC and parti-
cle repetition does significantly better than traditional MCTS.
Our complete method is shown in Algorithm 1.

3 4 5 6 7 8 9 10 11 12
log2(# of trials)

0

10

20

30

40

Re
gr

et

Regret by # monte carlo trials
Improvements

Classic
also w/ KL-UCB
also w/ MAC (proposed)
also w/ repetition (proposed)

Fig. 7: Ablation study of our method, showing the advantage of
starting from traditional MCTS using UCB and “max-robust child”,
then adding KL-UCB, marginal action costs (MAC), and finally also
particle repetition. Our full enhanced method performs better than
all the ablative cases.

IV. AUTONOMOUS DRIVING SCENARIO

We now evaluate MCPTDM on a more concrete problem
suggestive of an autonomous driving scenario, very similar to
that proposed by Zhang et al. for evaluating EUDM [8], but
with only two-lanes going in a single direction (see Fig. 8 and
9). Where possible, we have chosen equivalent parameters
and settings to the EUDM paper. Otherwise, we have chosen
parameters that: provide interesting and varied behavior; give
a fair comparison between each of our evaluation methods;
and allow us to run simulations fast enough to generate
sufficient data for our figures. Our goal is not to model real-
world driving, a research problem in its own right, but to
construct a benchmarking domain to elicit some of the same
structural properties.

We use a bicycle model, the intelligent driver model [42],
and pure pursuit lateral control [43] for all vehi-
cles, along with five policies: left-lane-maintain, left-lane-
accelerate, right-lane-maintain, right-lane-accelerate, or de-
celerate. Electing a policy for a different lane than the current
one causes a vehicle to perform a lane-change maneuver. For
integration of the overall outer simulation we use dt = 0.01 s
and for the inner forward simulations we use dt = 0.2 s.

Besides the ego vehicle, we simulate 13 “obstacle” vehi-
cles, and obstacle vehicles are removed and respawned so
that we can maintain 13 vehicles within a certain distance of
the ego vehicle. This number of vehicles ensures that there
may be complex interactions between multiple other vehicles
both in front of and behind the ego vehicle, but also keeps
the environment from being too congested. Each obstacle
vehicle is parameterized by a random (within some range)
preferred velocity (15-35 MPH), acceleration (1 - 2 m s−2),
and follow-time (0.8 s - 2.0 s), to provide some variation
and uncertainty in their behaviors. We chose these ranges
to be compatible with our choices of dt for integration and

Fig. 8: MCPTDM passing a vehicle and keeping distance from others in our simulated road environment. Vehicle 4 comes to a stop ahead
of vehicle 7, causing it to stop in ahead of the ego vehicle (number 0). The ego vehicle moves into the left lane, passes vehicle 7, and
then keeps a slight distance behind vehicle 4. We see how MCPTDM both performs tactical passing to make forward progress and also
prefers to keep distance from vehicle 4, just in case other vehicles behave erratically. The ego vehicle cuts relatively close to vehicle 13
coming from behind because its model of vehicle 13 is confident about its behavior and because the cost function does not penalize this
situation.
The ego vehicle is colored green, and obstacle vehicles are either blue while moving or gray while stationary. Monte Carlo
trials are shown by their forward-simulated traces, which are dark red for traces leading to a crash, pink for traces that are

somewhat unsafe, and green for safe traces. Frames are left-to-right in one-second increments. A video version of this
sequence is provided at https://youtu.be/HYYTT3EYY1Q.

to prevent spontaneous crashing between obstacle vehicles.
The true values for these random parameters are considered
unknown and the ego vehicle assumes nominal values for
each (a preferred velocity of either the current velocity or
15 MPH, whichever is greater; acceleration of 2 m s−2; and
a follow-time of 1.2 s). Every 0.2 seconds, each obstacle
vehicle has a small chance of randomly choosing a new pol-
icy (5% probability each second). Because obstacle vehicle
changes occur randomly, the policies used by the obstacle
vehicles will first check that the next lane is clear at least
a half-vehicle’s length ahead and behind before making a
lane-change maneuver. The policies used by the ego vehicle
do not make this check so they can be more flexible. As
obstacle vehicles are assumed to follow a single closed-loop
policy, these random policy changes are only modelled by the

ego vehicle’s uncertain belief over obstacle vehicle policies,
described below.

The ego car tries to safely and smoothly maintain a target
velocity by minimizing a cost function that incorporates
velocity, safety, and control inputs:

Cvel = |v − vtarget| (8)
Cacc = Waccv̇

2 (9)
Csteer = Wsteerθ̇

2 (10)
Csafety = Wsafety(1 + e−ksafety(dmin−dsafety))−1 (11)

C =

∫
(Cvel + Cacc + Csteer + Csafety)αt dt (12)

where v and θ are the ego vehicle’s forward velocity and
angle; vtarget = 11.2 m/s is the ego vehicle’s target velocity
(25 MPH); Wacc = 0.1, Wsteer = 20, and Wsafety = 600

Fig. 9: MCPTDM experiencing a crash in our simulated road environment (compare to Fig. 8). Although the situation we depict here is
not realistic, it illustrates the difficult and fairly random situations we are attempting to plan for. As vehicle 11 comes to a stop in front of
the ego vehicle, vehicle 9 from behind starts to make an unsafe lane-change into the right lane which the ego vehicle is unable to avoid.
It is possible that the ego vehicle could avoid this crash if it were using a replanning rate of faster than 4 Hz. From the forward-simulated
traces in the second-to-last frame, it appears that only scenarios with vehicle 11 accelerating first manage to avoid this crash, since the ego
vehicle’s intelligent driver model requires it to maintain a certain following distance. Frames are left-to-right in half-second increments.
A video version of this sequence is provided at https://youtu.be/6vK-RxXwBGw.

are the cost weights; dmin is the minimum distance between
the ego vehicle and any other vehicle; ksafety = −5 and
dsafety = 1 define the shape of a logistic sigmoid used for
safety penalties; and α = 0.8 is a discount factor. Minimum
distance dmin is calculated from the closest points between
the rotated vehicle rectangles.

We note that this cost function does not penalize situations
that may be considered risky from the perspective of non-ego
vehicles.

A. Belief estimation
Each obstacle vehicle may or may not be intending to

perform a lane-change maneuver. From the perspective of
the ego agent, this is hidden state and must be estimated in
order to perform a forward rollout.

For simplicity, we implement a stateless heuristic for belief
estimation based on thresholds for the direction a vehicle is
pointing, its position in its lane, and its velocity relative to
the vehicle ahead of it. While this belief estimation leaves
room for improvement, it should not affect the fairness of
our method comparisons.

B. Methods
1) Multi-policy decision making (MPDM): Our classic

MPDM comparison takes samples (according to the compu-

tational budget) from the belief state and closed-loop forward
simulates them through each of our five policy choices for
8 seconds. Finally, the policy with the lowest mean cost is
elected.

2) Efficient uncertainty-aware decision making (EUDM):
EUDM is an extension to MPDM that includes both a
specific tree search through the policies as well as a heuristic
for selecting belief samples that represent the most impor-
tant/risky cases.

The tree search used by EUDM, the “domain-specific
closed-loop policy tree”, allows for only one policy change
in the planning horizon, and this change must happen below
the root node of the tree. Just as in the original paper, we
use a tree depth of 4 with each layer taking 2 seconds
so that we have a total horizon of 8 seconds. As policy
changes must happen after the root node, EUDM has a built-
in hysteresis and will only actually change policies if it still
wants to 2 seconds after first making that decision. The
original authors use the current EUDM-selected policy as
an input to a separate “spatio-temporal semantic corridor”
trajectory generation module [44] which produces the actual
behavior for the ego vehicle. This extra module allows their
ego vehicle to react to changing circumstances in a risk-
aware fashion even with the 2 seconds of policy hysteresis.

We modified EUDM to consider switching policies at any
time, including immediately. This deviates from the original
EUDM method, but we found it improves its performance
in our comparison.

The heuristic used by EUDM, “conditional focused
branching” (CFB), selects nearby obstacle vehicles, filters
to just the vehicles whose policies we are uncertain about,
then performs open-loop forward simulations of each belief
policy, and finally makes a set of the most likely belief
samples formed by the Cartesian product of vehicles and
policies for each obstacle vehicle deemed risky by the open-
loop simulations. All non-risky vehicles are assigned their
most-likely policy.

In our implementation of EUDM, we perform open-loop
forward simulations by giving only the ego and obstacle
vehicle under examination dynamic policies, and simulate
all the other vehicles with just a constant velocity. We
use the same horizon of 8 seconds. We order obstacle
vehicles according to their “risk”, the difference between
the minimum and maximum costs from each of the policy
choices, and then we choose the 4 most risky vehicles. We
form the Cartesian product of these risky obstacle vehicles
and their policies and then finally select the most probable
scenarios according to our belief, and weight them according
to their probabilities. We take as many scenarios as allowed
by our computational budget.

3) Monte Carlo Policy Tree Decision Making
(MCPTDM): Our final method for application to the
automated driving scenario uses the improvements from the
synthetic experiments described above: marginal action cost
(MAC) expected-cost estimation and particle repetition. We
use KL-UCB and “max-robust child” selection just as in
the earlier experiments. In addition, when expanding a node
in the search tree, we first explore the child with the same
policy as the parent, since most of the time the ego vehicle
will be maintaining its current policy.

C. Experiments

We perform 16,384 runs for each method in order to get
significant results. To complete all these runs in a reasonable
time frame, we limit each run to 30 simulated seconds and
replan at 4 Hz. Runs are performed on a 2.5 GHz Intel Xeon
E5-2640 with a single thread for each run so that multiple
runs can be performed in parallel.

To make fair comparisons, we plot the final cost observed
in each run (with no discount) against the 95% computational
latency. That is, 95% of the replanning periods of a 30 second
run will have a latency less than this. The closer a method is
to the bottom left corner (closer to zero cost and zero time),
the better.

Over a total of 589,824 30-second long runs to make all
of these figures, there were a total of 2,573 crashes (0.44%).
Because crashes are both relatively rare and also lead to
much higher final costs, the error bars are relatively large
in some of the figures.

First we perform an ablation to see the separate contri-
butions of MACs and particle repetition. We performed a

parameter sweep to determine reasonable constants for KL-
UCB (for the full method) and for particle repetition, and
found that it did best when repeating as much as possible.
We find (see Fig. 10) that both MACs and particle repetition
result in significant improvements.

Finally we perform a comparison of our MCPTDM
method to our baseline methods of MPDM and EUDM
in Fig. 11. MCPTDM achieves significantly lower cost for
similar computational time. Our cost function is composed
of a safety cost (for avoiding crashes and being too close),
an efficiency cost (for being close to a target velocity),
and steering and acceleration costs (for minimizing control
inputs), where the safety and efficiency are the most sig-
nificant. We compare just the safety and efficiency costs
in figures 12 and 13, and note that the majority of the
lower cost improvements of MCPTDM against MPDM and
EUDM come from keeping efficiency without sacrificing
safety. Intuitively it makes sense that in most cases increased
safety (lower safety cost) comes with worse efficiency (lower
average velocity and a higher efficiency cost).

We notice that the EUDM’s CFB heuristic is only an
improvement in our self-driving scenario at the point of
highest computational cost, even though it shares significant
similarities with the scenarios used in the EUDM paper. This
may be a consequence of omitting the separate trajectory
optimizer from their paper, of implementing CFB in a
slightly different way, or of another factor. In addition, we
are surprised that vanilla MPDM is so competitive with
EUDM because MPDM is not able to forward simulate
policy changes like EUDM or MCPTDM.

We also note that our absolute (in figures 10 through
13) and qualitative results (in figures 8 and 9) are highly
dependent on the specific closed-loop policy, cost function,
and problem domain/vehicle modeling choices. We make a
fair comparison to MPDM and EUDM by using identical
components for each of these choices. As MCPTDM does
not provide tools for selecting or designing these compo-
nents, they must be carefully provided by some other method
for a practical application. MCPTDM is most appropriate
when a set of closed-loop policies can be effectively designed
for the problem domain.

V. CONCLUSION

In this paper we have presented Monte-Carlo Policy-
Tree Decision Making (MCPTDM), an MCTS-based search
framework for problems where the marginal costs of each ac-
tion or policy election are both available and important, such
as autonomous vehicle planning. We have presented several
novel ideas including the use of marginal action costs and
fairness-based particle repetition. We have validated these
improvements on both a simplified abstract task and also an
autonomous vehicle planning task. We have demonstrated
that MCPTDM has better performance than both MPDM
and EUDM. The code used to generate all the results in this
paper can be found at either https://osf.io/pguhz/
or https://github.com/acshi/MCPTDM to aid in
replicating and extending this work.

0.00 0.02 0.04 0.06 0.08 0.10
95% Computation time (s)

260

280

300

320

Co
st

MCPTDM ablation: cost by 95% computation time (s)
MCPTDM (-repeat, -MAC)
MCPTDM (-repeat)
MCPTDM (proposed)

Fig. 10: We perform an ablation of MCPTDM by evaluating it
without particle repetition and then also with “classic” expected-
cost estimation instead of marginal action costs. We see that both
improvements are significant.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

240

260

280

300

320

340

360

Co
st

Final comparison: cost by 95% computation time (s)
MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Fig. 11: Final comparison of MCPTDM with EUDM (both with and
without the CFB heuristic) and MPDM. MCPTDM achieves either
significantly lower final cost or significantly lower computational
time than either EUDM or MPDM.

A. Acknowledgements

This work was supported by grants from the NSF
(1830615).

Disclosure: Edwin Olson has a financial interest in a
company that may have rights to foreground or background
technology described in this paper.

REFERENCES

[1] K. J. Astrom, “Optimal control of Markov decision processes with
incomplete state estimation,” J. Math. Anal. Applic., vol. 10, pp. 174–
205, 1965.

[2] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations re-
search, vol. 21, no. 5, pp. 1071–1088, 1973.

[3] G. A. Hollinger, “Long-horizon robotic search and classification using
sampling-based motion planning.” in Robotics: Science and Systems,
vol. 3, 2015.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

80

100

120

140

160

180

200

Sa
fe

ty
 c

os
t

Final comparison: safety cost by 95% computation time (s)
MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Fig. 12: Comparison of just the final safety cost (lower is better)
between each method. At all computation times, MPDM is only
slightly less safe that MCPTDM. For larger computation times,
EUDM is also very similar. Compare with Fig. 13 and the plot
of just the efficiency cost.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
95% Computation time (s)

120

130

140

150

160

Ef
fic

ie
nc

y
co

st
Final comparison: efficiency cost by 95% computation time (s)

MPDM
EUDM, w/o CFB
EUDM, CFB
MCPTDM (proposed)

Fig. 13: Comparison of just the final efficiency cost (lower is better)
between each method. MCPTDM is quick to worsen efficiency (for
better safety) and also keeps the efficiency cost relatively low as
the computational budget increases. Compare with Fig. 12 and the
plot of just the safety cost.

[4] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement learning al-
gorithm for partially observable Markov decision problems,” Advances
in neural information processing systems, pp. 345–352, 1995.

[5] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Advances in neural information processing systems, 2010, pp. 2164–
2172.

[6] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Grasping POMDPs,”
in Proceedings 2007 IEEE International Conference on Robotics and
Automation. IEEE, 2007, pp. 4685–4692.

[7] A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson,
“MPDM: Multipolicy decision-making in dynamic, uncertain en-
vironments for autonomous driving,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), June
2015.

[8] L. Zhang, W. Ding, J. Chen, and S. Shen, “Efficient uncertainty-
aware decision-making for automated driving using guided branching,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3291–3297.

[9] M. L. Littman, “A tutorial on partially observable Markov decision
processes,” Journal of Mathematical Psychology, vol. 53, no. 3, pp.
119–125, 2009.

[10] G. E. Monahan, “State of the art—a survey of partially observable
Markov decision processes: theory, models, and algorithms,” Man-
agement science, vol. 28, no. 1, pp. 1–16, 1982.

[11] J. Satia and R. Lave, “Markovian decision processes with probabilistic
observation of states,” Management Science, vol. 20, no. 1, pp. 1–13,
1973.

[12] A. McGovern, R. S. Sutton, and A. H. Fagg, “Roles of macro-actions
in accelerating reinforcement learning,” in Grace Hopper celebration
of women in computing, vol. 1317, 1997, p. 15.

[13] G. Theocharous and L. P. Kaelbling, “Approximate planning in
POMDPs with macro-actions,” in Advances in Neural Information
Processing Systems, 2004, pp. 775–782.

[14] R. He, E. Brunskill, and N. Roy, “PUMA: Planning under uncertainty
with macro-actions.” in AAAI, 2010, p. 7.

[15] J. Van Den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[16] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “FIRM:
Feedback controller-based information-state roadmap–a framework for
motion planning under uncertainty,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 4284–
4291.

[17] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 723–730.

[18] F. Doshi-Velez, “The infinite partially observable Markov decision
process,” Advances in neural information processing systems, vol. 22,
pp. 477–485, 2009.

[19] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, “The infinite hidden
Markov model,” Advances in neural information processing systems,
vol. 1, pp. 577–584, 2002.

[20] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani, “Beam sampling
for the infinite hidden Markov model,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 1088–1095.

[21] C. Amato and F. Oliehoek, “Scalable planning and learning for
multiagent POMDPs,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 29, no. 1, 2015.

[22] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
MDPs,” in NIPS, vol. 1, 2001, pp. 1523–1530.

[23] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Decen-
tralised Monte Carlo tree search for active perception,” in WAFR, 2016.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of Go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[25] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “A0c: Alpha
zero in continuous action space,” arXiv preprint arXiv:1805.09613,
2018.

[26] W. Ding, J. Chen, and S. Shen, “Predicting vehicle behaviors over
an extended horizon using behavior interaction network,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8634–8640.

[27] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining
neural networks and tree search for task and motion planning in chal-
lenging environments,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 6059–6066.

[28] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
in NIPS 2017 Workshop on Machine Learning for Intelligent Trans-
portation Systems, 12 2017.

[29] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multi-
policy decision-making for autonomous driving via changepoint-based
behavior prediction,” in Proceedings of Robotics: Science and Systems
(RSS), Rome, Italy, July 2015.

[30] D. Mehta, G. Ferrer, and E. Olson, “Fast discovery of influential
outcomes for risk-aware MPDM,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), May 2017.

[31] ——, “Backprop-MPDM: Faster risk-aware policy evaluation through
efficient gradient optimization,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2018.

[32] B. Zhou, W. Schwarting, D. Rus, and J. Alonso-Mora, “Joint multi-
policy behavior estimation and receding-horizon trajectory planning
for automated urban driving,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2388–2394.

[33] R. Morton and E. Olson, “Robust sensor characterization via max-
mixture models: GPS sensors,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
November 2013.

[34] R. W. Wolcott and R. M. Eustice, “Robust LIDAR localization using
multiresolution Gaussian mixture maps for autonomous driving,” The
International Journal of Robotics Research, vol. 36, no. 3, pp. 292–
319, 2017.

[35] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[36] G. Chaslot, M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy,
“Progressive strategies for Monte-Carlo tree search,” New Mathematics
and Natural Computation, vol. 04, pp. 343–357, 11 2008.

[37] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[38] D. Michie and R. A. Chambers, “BOXES: An experiment in adaptive
control,” Machine intelligence, vol. 2, no. 2, pp. 137–152, 1968.

[39] J.-Y. Audibert, R. Munos, and C. Szepesvári, “Exploration–
exploitation tradeoff using variance estimates in multi-armed bandits,”
Theoretical Computer Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[40] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms
for linear stochastic bandits,” Advances in neural information process-
ing systems, vol. 24, pp. 2312–2320, 2011.

[41] A. Garivier and O. Cappé, “The KL-UCB algorithm for bounded
stochastic bandits and beyond,” in Proceedings of the 24th annual
conference on learning theory. JMLR Workshop and Conference
Proceedings, 2011, pp. 359–376.

[42] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[43] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[44] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory genera-
tion for complex urban environments using spatio-temporal semantic
corridor,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2997–3004, 2019.

